
FILTERED cA∞-CATEGORIES AND FUNCTOR

CATEGORIES

OLIVIER DE DEKEN AND WENDY LOWEN

Abstract. We develop the basic theory of curved A∞-categories (cA∞-
categories) in a filtered setting, encompassing the frameworks of Fukaya
categories [5] and weakly curved A∞-categories in the sense of Positselski
[17]. Between two cA∞-categories a and b, we introduce a cA∞-category
qFun(a, b) of so-called qA∞-functors in which the uncurved objects are
precisely the cA∞-functors from a to b. The more general qA∞-functors
allow us to consider representable modules, a feature which is lost if
one restricts attention to cA∞-functors. We formulate a version of the
Yoneda Lemma which shows every cA∞-category to be homotopy equiv-
alent to a curved dg category, in analogy with the uncurved situation.
We also present a curved version of the bar-cobar adjunction.

1. Introduction

The theory of A∞-categories is by now well-established, and furnishes
a natural background for the development of non-commutative geometry
[6], [11], [9], with applications ranging from Homological Mirror Symmetry
[8] to the study of Fourier Mukai functors [21], [20]. From the homotopy
perspective, dg categories and A∞-categories are equivalent tools with their
own particular advantages. On the one hand, dg categories are the simpler
objects, sufficient to capture many important examples like categories of
complexes over algebraic objects, but the development of their homotopy
theory is involved and makes use of the Tabuada model structure to invert
quasi-equivalences, leading on to the development of derived Morita theory
[22], [23], [7]. On the other hand, A∞-categories are more complex but
the formalism allows for the construction of actual A∞-functors outside the
dg framework, avoiding the use of model categories. Over a field, both
approaches are known to be equivalent. In particular, every A∞-category is
homotopy equivalent to a dg category. One of the useful features of the A∞-
framework is the possibility to construct natural functor categories which
are themselves A∞-categories [15]. For instance, this yields a natural way of
looking at the Hochschild complex of an A∞-category as the endomorphism
algebra of the identity functor.

An A∞-structure on a k-linear quiver a can easily be defined as a special
degree 2 element m ∈ C2(a), with m • m = 0 for the dot product. From
the point of view of deformation theory, it is quite unnatural to restrict
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attention to elements m with

0 = (mA
0 )A ∈

∏
A∈a

a2(A,A),

as is done in the classical definition of an A∞-category. Indeed, a Hochschild
cocycle φ may have a non-zero component φ0 telling us to deform the compo-
nent m0 non-trivially. From the formal perspective, it is straightforward to
define a curved A∞-structure (cA∞-structure) by the usual definition, only
this time allowing m0 6= 0. However, as a consequence the component m1

no longer squares to zero, and standard notions of cohomology disappear.
Further, it has been observed by Kontsevich and others that if one intro-
duces homotopy in the usual way, the curvature element of a cA∞-algebra
plays a very dominant role in the sense that under weak assumptions the al-
gebra becomes homotopy equivalent to a cA∞-algebra whose only non-zero
component is the curvature element [18] [10]. As such, the general develop-
ment of the theory of cA∞-categories may be met with some skepticism, as
it seems quite incompatible with the usual A∞-theory. This being said, as
cA∞-categories naturally turn up, one should wonder how they fit into the
framework of homological algebra. The present work is mainly inspired by
two settings in which cA∞-categories are often quite well behaved. Firstly,
there is the important setting of Fukaya categories, which are constructed
as cA∞-categories over the Novikov ring. Here, the geometric phenomenon
known as “bubbling” gives rise to curved objects, but in many cases these
objects can be eventually avoided in the development of Floer cohomol-
ogy. Secondly, in the deformation context, it often turns out that deformed
cA∞-categories can somehow be exchanged for dg or A∞-categories in an
appropriate sense [14], [13]. In both cases, this phenomenon is related to
the curvature being “small” with respect to a natural filtration.

The goal of this work is the development of part of the basic theory of
cA∞-categories in a completely general filtered framework, sufficient to en-
compass the higher special cases. Precisely, we work over an ordered monoid
L over which all algebraic structures are supposed to be filtered, and a com-
mutative ground ring k. The neutral element 0 of the monoid L is supposed
to be the smallest element for the order, and the filtrations of modules M
are such that F0M = M . Roughly speaking, the greater l ∈ L for which
the curvature element is in F la2(A,A), the smaller the curvature element
is considered to be. Throughout, we check compatibility of our construc-
tions with filtrations, in order that notions with traditional shortcomings
may be useful in filtered settings. Many of our results are extensions of
classical results in the A∞ context, and our treatment is inspired by the
treatment of A∞-categories from [3], as well as by Positselski’s work on cdg
categories. In particular, apart from the Fukaya setup, Positselski’s weakly
curved A∞-categories are a prime example fitting into our framework [17].

In §2, after presenting the necessary generalities on filtered structures we
introduce the filtered Hochschild object of a filtered quiver, and we define fil-
tered cA∞-categories (Definition 2.47). In §3, we define cA∞-functors (Defi-
nition 3.9) and the more primitive qA∞-functors (Definition 3.11), where no
structure compatibility is required. Even the definition of qA∞-functors is
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subtle as the presence of curvature elements in the components of these func-
tors poses convergence issues, that can be dealt with in the filtered setting.
Our main result in this section is the construction of the functor category
qFun(a, b) for cA∞-categories a and b, which is itself a cA∞-category (The-
orem 3.37). Moreover, the uncurved objects in this category are precisely
the cA∞-functors (Proposition 3.27). Further, we introduce cA∞-homotopy
equivalences between cA∞-categories, and we argue that unlike in the unfil-
tered case, these need not trivialize the theory.

In §4, we present a cA∞-version of the Yoneda Lemma. We consider the
cdg subcategory Modq∞(a) ⊆ qFun(a

op
,PCom(k)) of strict qA∞-functors

(that is, functors without zero-th component) from a
op

to the cA∞-category
PCom(k) of precomplexes of k-modules, and the further cdg subcategory
Repq∞(a) of representable modules. In Theorem 4.15 we prove the existence
of a “Yoneda” cA∞-homotopy equivalence Y : a −→ Repq∞(a). In particu-
lar, every cA∞-category is cA∞-homotopy equivalent to a cdg category, and
if the curvature component of an object in a lies in F la, then the curvature
component of the corresponding representable module lies in F lRep(a).

As an application of Theorem 4.15, we define a “Yoneda tensor product”
between cA∞-categories through the cdg tensor product of the corresponding
categories Rep(−). We also present an explicit construction of a tensor
structure on the tensor quiver a⊗ b in case one of the tensor factors is cdg,
and show it to be cA∞-homotopy equivalent to the Yoneda tensor product.

Finally, in §5, we extend the well known bar-cobar adjunction to the
context of cA∞-categories, recovering results by Nicolas [16] and Positselski
[17] as particular cases.

This paper is part of a larger project, in which the aim is to understand
the ways in which cA∞-categories are to be viewed in non-commutative ge-
ometry. Here, we have focused on the development of basic ingredients like
functor categories and the Yoneda Lemma. By keeping filtrations in the
background, we avoid the mismatch between the curved and the uncurved
world which exists in general. On the one hand, it is quite natural to ex-
pect functor categories between cA∞-categories to be themselves cA∞ rather
than A∞. On the other hand, it is standard practice in non-commutative
algebraic geometry to study algebro-geometric objects through associated
derived categories, which are obtained as the cohomology of suitable dg or
A∞-models. As such, it makes sense to consider Positselski’s derived cat-
egories “of the second kind”, and especially variants of the semi-derived
category from [17] in the filtered case, as representing the “classical part”
of cA∞-categories. In future work, we want to extend the invariance results
for qA∞-categories of Proposition 3.51 in the direction of Morita theory,
inspired by the deformation situation in [13] where a curved deformation
can essentially be replaced by an uncurved one with an equivalent semi-
derived category. We also want to investigate the relation of our work with
an approach by Armstrong and Clarke, who propose an unfiltered notion of
homotopy-equivalence based upon Morita invariance requirements [1].
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2. Filtered cA∞-categories

Let L be an ordered monoid and k an L-filtered commutative ground ring.
In this section, we introduce L-filtered k-linear cA∞-categories, where cA∞
stands for curved A∞. Roughly speaking, an L-filtered cA∞-category is a
cA∞-category in the category of L-filtered k-modules. The unfiltered case
is obtained by trivially filtering a commutative groundring k over L = {0}.

After reviewing the basic theory of filtered modules, filtered algebraic
structures and completion in §2.2 - §2.5, we introduce the filtered bar con-
struction Ba and the filtered Hochschild object C(a) of a filtered quiver
a in §2.6. In §2.8, we introduce filtered and complete formal cocategories,
with Ba and its completion B̂a as main examples. In §2.9, a filtered cA∞-
structure on a filtered k-quiver a is introduced as an element m ∈ C2(a) with
m{m} = 0 for the first brace operation (the dot product). Equivalently, the

natural coderivation on Ba (resp. the complete formal coderivation on B̂a)
determined by m is a codifferential, i.e squares to zero. The standout fea-
ture of a cA∞-category in comparison with an A∞-category is the possibly
non-trivial curvature component

m0 ∈
∏
A∈a

a2(A,A).

If m0 ∈ F lC(a) (where F l denotes the l-th piece of the filtration for l ∈ L),
we call a l-curved. In §2.10, we describe cA∞-quotients by cA∞-ideals. A
situation of particular interest occurs if a is l-curved, as we obtain an A∞-
quotient a/F la. This quotient protects a against some of the notoriously
bad behaviour of cA∞-categories, as we’ll discuss further in §3.6.2.

2.1. Ordered monoids. Throughout, we will use the following definition:

Definition 2.1. An ordered monoid L = (L,+,≤) consists of a set L on
which we have a commutative monoid structure (L,+) and a partial order
(L,≤) such that the following conditions are fulfilled:

(1) for a, b, c ∈ L with a ≤ b, we have a+ c ≤ b+ c.
(2) the neutral element 0 ∈ L for (L,+) is the smallest element for

(L,≤).

For n ∈ N and a ∈ L, we denote na =
∑n

i=1 a. Here, we interpret 0a = 0.
Later on, we will make use of the following property:

Definition 2.2. The ordered monoid L is archimedean if the following prop-
erty holds: for all 0 < a and 0 < b in L, there exists n ∈ N with b ≤ na.

Example 2.3. The set L = {0} is endowed with a unique (archimedean)
ordered monoid structure, which we call the trivial ordered monoid.

Example 2.4. If L has a largest element ∞, we necessarily have l+∞ =∞,
∞ + l = ∞ and ∞ +∞ = ∞ for l ∈ L. Conversely, to an arbitrary L we
can adjoin a largest element ∞, and we can uniquely endow L∞ = L∪ {∞}
with the structure of ordered monoid. We thus obtain the (archimedean)
ordered monoid S = {0}∞ = {0,∞} for L = {0} as in Example 2.3.
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Example 2.5. The natural numbers N, the non-negative rational numbers
Q+, and the non-negative real numbers R+ are archimedean ordered monoids
for the usual summation + and the usual order ≤.

2.2. Filtered modules. Let k be a commutative ground ring. Since we
are mainly interested in Z-graded objects, our starting point is the category
Mod(k) of Z-graded k-modules (Mn)n and Z-graded morphisms. These will
be simply referred to as k-modules and morphisms. Ordinary k-modules
and morphisms are considered as Z-graded by placing them in degree 0.
The category Mod(k) is symmetric monoidal closed with

(M ⊗k N)n = ⊕p+q=nMp ⊗k N q

and

Homk(M,N)n =
∏
i∈Z

Homk(M
i, N i+n).

Throughout, we adopt the sign convention from [12, §2.1].
Let (L,+,≤) be a commutative ordered monoid as in Definition 2.1.

Definition 2.6. An L-filtered k-module (or simply filtered k-module) is a
k-module M together with, for every l ∈ L, a submodule F lM ⊆ M such
that F0M = M and l′ ≤ l implies F lM ⊆ F l′M .

Consider filtered k-modules M and N . The tensor product M ⊗k N is
naturally filtered with

(1) F l(M ⊗k N) = Im(⊕p+q≥lFpM ⊗k FqN −→M ⊗k N).

More generally, for filtered k-modules Mi, 1 ≤ i ≤ n, the tensor product
⊗ni=1Mi is filtered with

(2) F l(⊗ni=1Mi) = Im(⊕∑
i li=l

⊗ni=1 F liMi −→ ⊗ni=1Mi).

Definition 2.7. An L-filtered k-linear morphism (or simply a filtered k-
morphism) from M to N is a k-linear morphism f : M −→ N with
f(F lM) ⊆ F lN for each l ∈ L.

Filtered k-morphisms constitute a filtered module k[M,N ] with

(3) F l(k[M,N ]) = {f ∈ Homk(M,N) | f(FpM) ⊆ Fp+lN}.

Remark 2.8. Note that unlike for the tensor product M⊗kN , as a k-module

k[M,N ] is not equal to the module Homk(M,N) of k-linear morphisms from
M to N .

By definition, k[⊗ni=1Mi,M ] contains all f ∈ Homk(⊗ni=1Mi,M) with

(4) f(F l1M1, . . . ,F lnMn) ⊆ F l1+···+lnM.

We thus obtain a symmetric monoidal closed category ModL(k) of fil-
tered k-modules and filtered k-morphisms, for which the (monoidal) forget-
ful functor ModL(k) −→ Mod(k) has both adjoints. The (monoidal) left
adjoint is obtained by endowing a k-module M with the discrete filtration
with F0M = M and F lM = 0 for l 6= 0. The (monoidal) right adjoint is ob-
tained by endowing a k-module M with the trivial filtration with F lM = M
for all l.
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Example 2.9. Let L = {0} be the trivial ordered monoid. Then L-filtered k-
modules simply correspond to k-modules, and we recover the usual notions
of k-linear morphisms, tensor modules and Hom-modules.

Example 2.10. Let L be an orderer monoid with L∞ = L ∪ {∞} as in
Example 2.4. Every L-filtered k-module becomes L∞-filtered by putting
F∞M = 0. With this definition, by k-linearity, an L-filtered k-morphism
automatically becomes L∞-filtered. The ordered monoid S = {0}∞ can
thus be used to endow any k-module M with the S-filtration F0M = M
and F∞M = 0.

2.3. Filtered structures. Let S be a commutative ground ring and let L
be as before. The usual algebraic structures can be defined with respect to
the symmetric monoidal category ModL(S).

Definition 2.11. (1) A filtered S-algebra is a filtered S-module k with
a filtered S-morphism m : k ⊗S k −→ k satisfying the associativity
relation m(m⊗1) = m(1⊗m). A filtered Z-algebra is called a filtered
ring.

(2) A filtered S-algebra k is unital with unit 1k ∈ k if m(1k, x) = x =
m(x, 1k) for all x ∈ k.

(3) For a filtered S-algebra k, a filtered (left) k-module is a filtered S-
module M with a filtered S-morphism ρ : k ⊗S M −→M satisfying
ρ(1⊗ ρ) = ρ(m⊗ 1).

(4) A filtered left k-module is unital if ρ(1k,m) = m for all m ∈M .

From now on, we will always include unitality in the notions of filtered
algebras and modules unless otherwise stated. As usual, the operations like
m and ρ are simply denoted by juxtaposition.

For a filtered S-algebra k, we obtain a category ModL(k) of filtered left k-
modules with filtered k-linear morphisms (k-morphism for short). As usual,
this category is independent of S (we may take S = Z and consider k as a
filtered ring).

Remark 2.12. (1) Let k be a filtered S-algebra and M a filtered left k-
module. By definition, we have ρ(F0k,FnM) ⊆ FnM so each FnM
is an F0k-module.

(2) We can consider S with the discrete filtration as a filtered S-algebra,
for which the modules are precisely the filtered S-modules. Thus, a
unit for k corresponds to a filtered map S −→ k. Suppose 1k ∈ F lk.
Then for all x ∈ k, we have x = 1kx ∈ F lk. Thus, we conclude
that necessarliy F lk = k. The filtration of k is called proper if
1k ∈ F lk implies l = 0. In the sequel, we will assume that all filtered
S-algebras are properly filtered.

2.4. Filtered modules over a filtered ring. Suppose k is a commutative
filtered ring. Then we can repeat over k the constructions we performed in
the previous paragraph. Precisely, for filtered k-modules M and N , we ob-
tain the tensor product M⊗kN with filtration given by (1). More generally,
for filtered k-modules Mi, 1 ≤ i ≤ n, the tensor product ⊗ni=1Mi is filtered
with

(5) F l(⊗ni=1Mi) = Im(⊕∑
i li=l

⊗ni=1 F liMi −→ ⊗ni=1Mi).
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The category ModL(k) is symmetric monoidal and we have a (monoidal)
forgetful functor ModL(k) −→ Mod(k). The (monoidal) left adjoint is ob-
tained by endowing a k-module M with the canonical filtration with

F lM = F lk ·M = {
n∑
i=0

αimi | αi ∈ F lk,mi ∈M}.

Obviously, k is itself endowed with the canonical filtration. If k-modules Mi,
1 ≤ i ≤ n, are endowed with the canonical filtration, then by (5), ⊗ni=1Mi

is also endowed with the canonical filtration.
Filtered k-morphisms from M to N are defined as in Definition 2.7, and

they constitute a filtered k-module k[M,N ] with filtration given by (3). By
definition, F l(k[⊗ni=1Mi,M ]) contains all f ∈ Homk(⊗ni=1Mi,M) with

(6) f(F l1M1, . . . ,F lnMn) ⊆ F l+l1+···+lnM.

Remark 2.13. If the k-module M is canonically filtered, have k[M,N ] =
Homk(M,N).

Consider a family (Mi)i of filtered k-modules. The sum ⊕iMi and the
product

∏
iMi are naturally filtered modules with F l(⊕iMi) = ⊕iF lMi

and F l(
∏
iMi) =

∏
iF lMi. More generally, we can endow an arbitrary

limit limiMi with the filtration F llimiMi = limiF lMi, and directed colimits
being exact, we can endow a directed colimit colimiMi with the filtration
F lcolimiMi = colimiF lMi. If the modules Mi are canonically filtered, all
these constructions are endowed with the canonical filtrations as well.

A submodule M ⊆ N with both M and N filtered is called a filtered
submodule if F lM ⊆ F lN , i.e. if the inclusion is a filtered morphism. In
general, there is no natural way to filter the quotient of a filtered module by
a filtered submodule. However, let N be a filtered k-module and M ⊆ N
a k-submodule. Then we obtain the pullback filtration on M with F lM =
M ∩ F lN and we obtain the quotient filtration on N/M with F l(N/M) =
F lN/M ∩ F lN .

For a subset A ⊆ k and n ∈ N, we consider the subset n
√
A = {x ∈ k | xn ∈

A} ⊆ k. If A is an ideal in k, then A ⊆ n
√
A. In this case, the radical of A,

rad(A) = ∪n∈N n
√
A is an ideal and A is called radical if A = rad(A). Note

that F lk is an ideal for l ∈ L.
The following notion will be used later on:

Definition 2.14. The filtered ring k is called radically filtered if the follow-
ing condition holds: for every 0 < l ∈ L and n ∈ N, there exists 0 < l′ ∈ L
with

(7)
n
√
F lk ⊆ F l′k.

Remark 2.15. If l0 = min{l ∈ L | 0 < l} exists in L, then k is radically

filtered if and only if the ideal F l0k is radical.

Lemma 2.16. Suppose k is radically filtered and let l, n, l′ be as in (7).
Let M be a free k-module endowed with the canonical filtration. If x ∈ M
satisfies x⊗n ∈ F l(M⊗n), then x ∈ F l′M .
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Proof. For M = kI , the canonical filtration is given by F lM = ⊕IF lk. We
have FλM = ⊕IFλk and we have M⊗n = kI

n
and FλM⊗n = ⊕InFλk.

Write x = (xi)i∈I ∈ kI . For x⊗n, we have (x⊗n)(i,...,i) = (xi)
n. If x⊗n ∈

F lM⊗n, we thus have (xi)
n ∈ F lk and xi ∈

n
√
F lk ⊆ F l′k. It follows that

x ∈ F l′M . �

Example 2.17. Let k be a ring and let S = {0,∞} be as in Example 2.4.
Then k becomes S-filtered with F∞k = 0 and we can endow every k-module
M with the canonical discrete S-filtration for which F∞M = 0, for which
M becomes a filtered k-module over the filtered ring k.

By Remark 2.15, k is radically filtered if and only if {0} ⊆ k is a radical
ideal.

Example 2.18. Let k be a ring and I ⊆ k an ideal. Take L = N. Then k
becomes a filtered ring by putting Fnk = Ink, the so called I-adic filtra-
tion. A filtered k-module is a k-module M with a filtration FnM such that
ImFn ⊆ Fn+m. In particular, every k-module M can be endowed with the
canonical I-adic filtration by putting FnM = InM .

By Remark 2.15, k is radically filtered if and only if I ⊆ k is a radical
ideal.

Example 2.19. Let S be a commutative ring. The monoid S-algebra S[L] is
the free S-module on generators tλ for λ ∈ L, endowed with the multiplica-
tion (atλ)(btλ

′
) = abtλ+λ′ . The ring S[L] becomes a filtered S-algebra with

F lS[L] given by the S-submodule generated by {tλ | λ ≥ l}.
Taking L = N, we obtain S[N] = S[t], the ring of polynomials with

coefficients in S, with F lS[t] = tlS[t].

Example 2.20. Let S be a commutative ring. The ring S[[L]] is the ring of
formal expressions

∑
λ∈L aλt

λ with aλ ∈ S and t a formal parameter, subject
to the following condition:

(∗) for each λ ∈ L, the number of κ � λ with aκ 6= 0 is finite.

The operations on S[[L]] are given by

(
∑
λ

aλt
λ) + (

∑
λ

bλt
λ) =

∑
λ

(aλ + bλ)tλ

and
(
∑
λ

aλt
λ)(
∑
λ

bλt
λ) =

∑
λ

(
∑

λ′+λ′′=λ

aλ′bλ′′)t
λ.

Note that for the second expression to make sense, we have to ensure that
for given λ, the number of pairs (λ′, λ′′) with λ′ + λ′′ = λ and aλ′bλ′′ 6= 0, is
finite. But from 0 ≤ λ′′ we obtain λ′ ≤ λ′ + λ′′ = λ and similarly λ′′ ≤ λ.
It thus follows from condition (∗) on the coefficients that the inner sum is
finite, and the resulting expression is seen to satisfy (∗).

The ring S[[L]] is endowed with the filtration

F lS[[L]] = {
∑
λ

aλt
λ | λ � l =⇒ aλ = 0}.

It is seen to be a filtered ring (in fact, a filtered S-algebra). Suppose for all
l ≤ λ in L, there exists l′ ∈ L with λ = l + l′. Then we have F lS[[L]] =
tlS[[L]].
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Example 2.21. Let S be a commutative ring and put k = S[[t]]. Take L = N.
We have S[[N]] = S[[t]], the ring of formal power series. The filtration
described in Example 2.20 is precisely the (t)-adic filtration described in
Example 2.18.

Example 2.22. Take L = R+ in Example 2.20. Consider x =
∑

λ∈L aλt
λ ∈

k = S[[R+]]. It follows from condition (∗) that the elements λ for which aλ 6=
0 form a countable closed subset of R+ and we can rewrite x =

∑∞
n=0 aλnt

λn

with limn→∞λn = ∞. Here, it may of course happen that aλn = 0 for
n ≥ n0 for a certain n0. Also, we have F lk = tlk.

Let us now show that k = S[[R+]] is radically filtered as soon as {0} is
a radical ideal in S. Consider x =

∑
λ∈L aλt

λ ∈ k and let ρ = min{λ ∈
L | aλ 6= 0}. We have x = tρy for some y =

∑
λ∈L bλt

λ ∈ k with b0 6= 0.

Hence, xn = tnρyn and yn =
∑

λ∈L cλt
λ with c0 = bn0 6= 0. Hence, if

xn ∈ F lk = tlk, we deduce that l ≤ ρn and l
n ≤ ρ. It follows that x ∈ F

l
nk.

Thus, in (7), we can take l′ = l
n .

In [4], Fukaya defines the universal Novikov ring as Λnov,0 = Q[ξ][[R+]]
where S = Q[ξ] is the Z-graded polynomial ring with deg(ξ) = 2 (see also
[5]).

2.5. Completion. Let k be a commutative L-filtered ring and let M be a
k-module. We can define the completion M̂ of M in a purely algebraic way
as

M̂ = limλ∈LM/FλM.

with the pointwise sum and k-action. The quotients M/FλM are naturally
filtered by F l(M/FλM) = F lM/FλM ∩ F lM and limλM/FλM is filtered
by

F lM̂ = limλF lM/FλM ∩ F lM.

Note that for λ ≤ l, we have F lM/FλM ∩ F lM = 0.

There is a canonical filtered k-morphism M −→ M̂ . The module M is
complete provided that this morphism is an isomorphism. A filtered mor-
phism M −→ N naturally induces a filtered morphism M̂ −→ N̂ .

Algebraic structures on M can be carried over to M̂ . For instance, if
R is a filtered ring, R̂ becomes a filtered ring with multiplication given by
(xλ)(yλ) = (xλyλ) with xλyλ defined using representatives in M .

Example 2.23. The filtered S-algebra S[[L]] from Example 2.20 can isomor-
phically be described as the completion of the filtered monoid S-algebra
S[L] from Example 2.19. This generalizes the well known fact that S[[t]] is
obtained as the completion of S[t] with respect to the t-adic filtration.

2.6. The filtered Hochschild object of a filtered quiver. Let (L,+,≤)
be an ordered monoid as before and let k be a commutative L-filtered ground
ring. Unless otherwise stated, all constructions are over k. Since we will
work in a multi-object setup, our fundamental objects are quivers rather
than modules.

Definition 2.24. An L-filtered k-quiver (or simply (filtered) k-quiver) a
consists of a set of objects Ob(a) and for all A,A′ ∈ Ob(a), a filtered k-
module a(A,A′) ∈ ModL(k).
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Definition 2.25. Consider L-filtered k-quivers a and b. An L-filtered k-
morphism (or simply a filtered k-morphism) f : a −→ b is given by an
underlying map f : Ob(a) −→ Ob(b) and for all A,B ∈ Ob(a) an L-filtered
k-morphism

fA,B : a(A,B) −→ b(f(A), f(B)).

If the maps fA,B are given by inclusions of filtered submodules (or, more
generally, by filtered monomorphisms), we write a ⊆ b and we call a a
subquiver of b.

Remark 2.26. Taking L = {0}, we recover the standard notions of k-quivers
and morphisms of k-quivers (see [2]).

For a filtered k-quiver a, the completion â is obtained by completing all the
individual k-modules a(A,A′) in the sense of §2.5, and a is called complete
if the resulting morphism a −→ â is an isomorphism.

Consider filtered k-quivers a and b and a map f : Ob(a) −→ Ob(b). We
define the filtered k-module

k[a, b]f =
∏

A,A′∈a
k[a(A,A′), b(f(A), f(A′))].

If Ob(a) = Ob(b), we define the tensor product a ⊗k b as the filtered
k-quiver with the same set of objects and

a⊗k b(A,A′) =
⊕
A′′∈a

a(A′′, A′)⊗k b(A,A′′).

In the sequel, all constructions will be over k unless stated otherwise, so for
legibility we will use unadorned notations for tensor products (⊗ = ⊗k) and
filtered morphisms ([−,−] =k [−,−]).

Remark 2.27. The tensor product of quivers with the same set of objects
which we just defined and which will be used throughout the paper should
not be confused with another standard tensor product that exists between
arbitrary quivers, and that produces a new quiver with the product of the
two object sets as new object set.

We define kOb(a) to be the filtered k-quiver with the same object set as
a and

kOb(a)(A,A′) =

{
k if A = A′

0 else.

Let f : a −→ b be a filtered morphism of quivers. We define the filtered
k-morphism

kOb(f) : kOb(a) −→ kOb(b)

by the same underlying map Ob(a) −→ Ob(b) as f and kOb(f)(A,A) : k −→
k equal to the identity morphism on k.

Clearly, kOb(a) is the unit with respect to the tensor product, so we put
a⊗0 = kOb(a).

The tensor k-quiver T (a) is the filtered k-quiver

T (a) = ⊕n≥0a
⊗n
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For filtered k-quivers a and b, and a map f : Ob(a) −→ Ob(b), we put
[T (a), b]f,n = [a⊗n, b]f which is given by∏

A0,...,An∈a
[a(An−1, An)⊗ · · · ⊗ a(A0, A1), b(f(A0), f(An))].

By definition of the filtered tensor product,

φ ∈ [a(An−1, An)⊗ · · · ⊗ a(A0, A1), b(f(A0), f(An))]

is given by φ ∈ Homk(a(An−1, An)⊗ · · · ⊗ a(A0, A1), b(f(A0), f(An))) with

φ(F lna(An−1, An), . . . ,F l1a(A0, A1)) ⊆ F l1+···+lnb(f(A0), f(An)).

Remark 2.28. The zero part is given by

[T (a), b]f,0 =
∏
A∈a

[k, b(f(A), f(A))] =
∏
A∈a

b(f(A), f(A))

where we have used Remark 2.13.

We thus obtain
[T (a), b]f =

∏
n≥0

[T (a), b]f,n

which is endowed with a natural projection

p0 : [T (a), b]f −→ [T (a), b]f,0

onto the zero part. Suppose an element Jf ∈ [a, b]f has been chosen.
Consider another filtered k-quiver c and map g : Ob(b) −→ Ob(c). We

obtain brace-compositions

[T (b), c]g,n⊗k [T (a), b]f,n1 ⊗k · · · ⊗k [T (a), b]f,nk
−→ [T (a), c]gf,n−k+n1+···+nk

with

(8) φ{φ1, . . . , φk} =
∑

φ(Jf ⊗ · · · ⊗ φ1 ⊗ Jf ⊗ · · · ⊗ φk ⊗ Jf ⊗ · · · ⊗ Jf ).

Remark 2.29. The morphisms occuring in φ{φ1, . . . , φk} are readily seen to
be filtered, since the morphisms occuring in φ, φj for all 1 ≤ j ≤ k and Jf
are filtered.

Remark 2.30. The element Jf ∈ [a, b]f should be thought of as a kind of
identity map from a to b, offering a “trivial” way to transport elements from
a to b.

Remark 2.31. Let filtered k-quivers a, b, c, d and maps

Ob(a)
f
// Ob(b) g

// Ob(c)
h
// Ob(d)

be fixed and suppose brace operations are defined with respect to (compo-
sitions) of these maps. Consider elements φ ∈ [T (c), d]h, φi ∈ [T (b), c]g,
ψj ∈ [T (a), b]f . If we use identity-like element Jf ∈ [a, b]f , Jg ∈ [b, c]g and
Jgf = JgJf ∈ [a, c]gf , then the operations (8) satisfy the brace-type axiom
(see [12, Definition 2.1]), i.e.

φ{φ1, . . . , φm}{ψ1, . . . , ψn}

=
∑

(−1)αφ{Jgψ1, . . . , φ1{ψi1 , . . . }, Jgψj1 , . . . , φm{ψim , . . . }, Jgψjm , . . . , Jgψn}

where α =
∑m

k=1 |φk|
∑ik−1

l=1 |ψl|.
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Let Σa denote the shift of a, i.e. the filtered k-quiver with Σa(A,A′)i =
a(A,A′)i+1.

Definition 2.32. We define the bar construction of a filtered k-quiver a to
be the filtered k-quiver

Ba = T (Σa).

The completion of Ba with respect to its filtration is denoted by B̂a.

Definition 2.33. Consider filtered k-quivers a and b and a map f : Ob(a) −→
Ob(b). We define

Cbr(a, b)f = [Ba,Σb]f

and associate to it the Hochschild object of a and b with respect to f , given
by

C(a, b)f = Σ−1Cbr(a, b)f .

Remark 2.34. We denote Cbr(a) = Cbr(a, a)1a and C(a) = Σ−1Cbr(a). The
former is a brace algebra for the standard brace compositions, and we will
freely consider the transfered compositions on the latter as well.

Considering (C(a, b)f )0 = Σ−1[Ba,Σb]f,0, we obtain the projection

p0 : C(a, b)f −→ (C(a, b)f )0

onto the zero part.

2.7. Tensor convergent collections. In this section, we investigate the
notion of tensor convergence which will be crucial later on in §3.1.

Definition 2.35. Let a be a filtered quiver, X a set and f : X −→ Ob(a)
a map. A collection of elements (αx)x∈X with αx ∈ a(f(x), f(x)) is called
tensor convergent if for every l ∈ L there exists n ∈ N such that for every
element

γ = βk ⊗ · · · ⊗ β1 ∈ a(Ak−1, Ak)⊗ · · · ⊗ a(A0, A1)

for which there exist n different indices i1, . . . in and elements x1, . . . , xn ∈ X
with βim = αxm , we have that γ ∈ F l(a(Ak−1, Ak)⊗ · · · ⊗ a(A0, A1)).

Proposition 2.36. Let a be a filtered quiver, X a set, f : X −→ Ob(a) a
map, and (αx)x∈X a collection of elements with αx ∈ a(f(x), f(x)). Suppose
L is archimedean. Suppose there exists 0 < λ ∈ L with αx ∈ Fλ(a(f(x), f(x))
for all x ∈ X. Then the collection (αx)x∈X is tensor convergent.

Proof. For 0 ≤ l ∈ L, take Nl ∈ N such that l ≤
∑Nl

i=1 λ. For n ≥ Nl, we

have γ ∈ FkM⊗n for k =
∑n

i=1 λ ≥ l. �

Proposition 2.37. Let k be a radically filtered ring over L with |L| > 1.
Let a be a filtered k-quiver for which every a(A,A) is a free, canonically
filtered k-module. Let X be a set, f : X −→ Ob(a) a map, and (αx)x with
αx ∈ a(f(x), f(x)) a tensor convergent collection of elements. There exists
0 < λ such that αx ∈ Fλa(f(x), f(x)) for all x ∈ X.

Proof. Take any 0 < l. Since (αx)x is tensor convergent, there exists n ∈ N
for which α⊗nx ∈ F la(f(x), f(x))⊗n for every x. For l′ as in (7), by Lemma

2.16, we have αx ∈ F l
′
a(f(x), f(x)). �
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2.8. Filtered cocategories.

Definition 2.38. A filtered cocategory C is a filtered k-quiver with a filtered
morphism of quivers

∆ : C −→ C ⊗ C
which is coassociative, i.e. ∆ satisfies

(1⊗∆)∆ = (∆⊗ 1)∆.

The morphism ∆ is called the comultiplication. A counit for C is a filtered
morphism η : C −→ kOb(C) with

(1C ⊗ η)∆ ∼= 1C ∼= (η ⊗ 1C)∆,

and in this case C is called counital. An augmentation for C is a filtered
retract ε : kOb(C) −→ C of the counit, i.e.

ηε = IdkOb(C)

For a filtered cocategory (C,∆), we can iterate the comultiplication. We
put

∆(0) = 1 : C −→ C
∆(1) = ∆ : C −→ C ⊗ C

∆(n) = (1⊗n−1 ⊗∆)∆(n−1) : C −→ C⊗n+1

Remark 2.39. Let x be an element in C. We will use the notation for the
iterated comultiplication ∆(n) as introduced in [3]:

∆(n)(x) =
∑
a

x1
a ⊗ . . .⊗ xn+1

a

Definition 2.40. A filtered morphism of cocategories f : (C,∆) −→ (C′,∆′)
is a filtered morphism of k-quivers such that

(f ⊗ f)∆ = ∆′f.

If C and C′ are counital with respective counits η and η′, then f is a filtered
morphims of counital cocategories provided that furthermore

kOb(f)η = η′f.

Consider two filtered morphisms f, g : (C,∆) −→ (C′,∆′). A filtered
morphism of k-quivers d : C −→ C′ is a filtered (f, g)-coderivation if and
only if

∆′d = (f ⊗ d+ d⊗ g)∆

A filtered coderivation of a filtered cocategory C is a (1C , 1C)-coderivation.
A filtered dg-cocategory is a filtered cocategory (C,∆) endowed with a fil-

tered coderivation d such that d2 = 0. In this case, d is called the codifferen-
tial of C. A filtered morphism of dg cocategories f : (C,∆, d) −→ (C′,∆′, d′)
is a filtered morphism of cocategories which satisfies d′f = fd.

Remark 2.41. Consider a morphism of cocategories f : C −→ D. By defini-
tion, we have that

∆′(n)f = f⊗n∆(n)

whereas for an (f, g)-coderivation d : C −→ D, we have that

∆′(n)d = (d⊗ g⊗n + f ⊗ d⊗ g⊗n−1 + . . .+ f⊗n ⊗ d)∆(n)
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Let (C,∆) be a filtered cocategory. We obtain an induced morphism

∆̂ : Ĉ −→ C⊗̂C

where C⊗̂C is the completion of C ⊗ C for its natural filtration. There is a
canonical filtered morphism of quivers Ĉ⊗Ĉ −→ Ĉ⊗̂Ĉ ∼= C⊗̂C which is not an
isomorphism in general. In contrast to the dual case of filtered categories,
the completion Ĉ does not naturally inherit a structure of filtered cocategory.
To remedy this, we introduce the following notion:

Definition 2.42. A formal cocategory C is a complete filtered k-quiver with
a filtered morphism of quivers

∆ : C −→ C⊗̂C

which is formally coassociative, i.e. ∆ satisfies

(1⊗̂∆)∆ = (∆⊗̂1)∆.

Similarly, the other notions in Definition 2.38 as well as in Definition 2.40
can easily be adapted to the formal setting (with the adjectives formal re-
placing filtered in the original definition) simply by working with completed
tensor products instead of ordinary filtered tensor products.

Example 2.43. Let a be a filtered k-quiver and Ba its Bar construction as in
Definition 2.32. We introduce a filtered counital cocategory structure on Ba.
As a consequence, the completion B̂a becomes a formal counital cocategory.

The quiver Ba comes equipped with natural projections pn : Ba −→
(Σa)⊗n and injections in : (Σa)⊗n −→ Ba. For legibility, we omit the maps
in from the notations where possible. In particular, for every object A ∈ a
we have an element 1k,A ∈ kOb(a)(A,A) = (Σa)⊗0 ⊆ Ba. If the object A is
clear from the context, we will simply write 1k.

The quiverBa becomes a cocategory with the comultiplication ∆ : Ba −→
Ba⊗Ba determined by

∆(1k) = 1k ⊗ 1k

∆(a) = 1k ⊗ a+ a⊗ 1k

∆(an ⊗ · · · ⊗ a1) =(an ⊗ · · · ⊗ a1)
⊗

1k

+
n−1∑
i=1

(an ⊗ · · · ⊗ ai+1)
⊗

(ai ⊗ · · · ⊗ a1)

+ 1k
⊗

(an ⊗ · · · ⊗ a1)

for 1k ∈ (Σa)⊗0, a ∈ Σa, (an ⊗ · · · ⊗ a1) ∈ (Σa)⊗n. The cocategory Ba is
counital with p0 : Ba −→ kOb(a) as counit.

2.9. Filtered cA∞-categories. Let a be a filtered k-quiver. Consider an
element

m = (mn)n≥0 ∈ C2(a) ∼= [Ba,Σa]1
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with the notation of Remark 2.34. Consider for n ≥ 1 the filtered morphism
of quivers m̂n : Ba −→ (Ba)n which sends x1 ⊗ . . .⊗ xk to

n∑
l=1

(−1)|x1|+...+|xl−1|+l−1x1 ⊗ . . .⊗mk−n+1(xl, . . . , xl+k−n)⊗ . . .⊗ xk.

Lemma 2.44. There exists a unique filtered coderivation m̄ : Ba −→ Ba
with p1m̄ = m̂1 = m. The filtered coderivation m̄ further satisfies pnm̄ =
m̂n. As such, we have m̄ =

∑
n m̂n where, upon evaluation at a fixed element

in Ba, the sum becomes finite.

Remark 2.45. We also obtain an induced formal coderivation m̂ = ˆ̄m :
B̂a −→ B̂a.

Lemma 2.46. The following are equivalent:

(1) m{m} = 0.
(2) m̄m̄ = 0.
(3) m̂m̂ = 0.

Definition 2.47. Let a be a filtered k-quiver. A filtered cA∞-structure on
a is an element m ∈ C2(a) that satisfies the equivalent conditions of Lemma
2.46. In this case (a,m) is called a filtered cA∞-category.

Remark 2.48. Explicitely, the cA∞-relation m{m} = 0 translates into the
following identities for p ≥ 0:

(9)
∑

j+k+l=p

(−1)jk+lmj+l+1(1⊗j ⊗mk ⊗ 1⊗l) = 0.

The first few identities are explicitely given by:

m1(m0) = 0(10)

m1m1 +m2(1⊗m0)−m2(m0 ⊗ 1) = 0(11)

m1m2 −m2(1⊗m1)−m2(m1 ⊗ 1) +m3(1⊗ 1⊗m0)−m3(1⊗m0 ⊗ 1) +m3(m0 ⊗ 1⊗ 1) = 0
(12)

m1m3 +m2(1⊗m2)−m2(m2 ⊗ 1) +m3(1⊗ 1⊗m1) +m3(1⊗m1 ⊗ 1)−m3(m1 ⊗ 1⊗ 1)
(13)

+m4(1⊗ 1⊗ 1⊗m0)−m4(1⊗ 1⊗m0 ⊗ 1) +m4(1⊗m0 ⊗ 1⊗ 1)−m4(m0 ⊗ 1⊗ 1⊗ 1) = 0

...

Suppose b ⊆ a is a full subquiver of a filtered quiver a, that is Ob(b) ⊆
Ob(a) and for B,B′ ∈ Ob(b) we have b(B,B′) = a(B,B′). Endowing b with
the natural inherited filtration, there is a canonical projection C(a) −→ C(b)
between the Hochschild objects which respects the brace operations. As
a consequence, every cA∞-structure m on a restricts to an inherited cA∞
structure m|b on b. With this structure, we will call b a full cA∞-subcategory
of a.

Definition 2.49. Consider a filtered cA∞-structure on a. The component
m0 ∈ C2(a)0 is given by

(mA
0 )A ∈

∏
A∈a

a2(A,A),
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and is called the curvature of a. Consider an object A ∈ a. The element
mA

0 ∈ a2(A,A) is called the curvature of A. The object A is called:

(1) l-curved for l ∈ L if mA
0 ∈ F la(A,A).

(2) weakly curved if it is l-curved for some l 6= 0.
(3) uncurved if mA

0 = 0.

The cA∞-structure m (or the cA∞-category a) is called:

(1) l-curved for l ∈ L if m0 ∈ F lC(a).
(2) uniformly weakly curved if it is l-curved for some l 6= 0.
(3) weakly curved if every object A ∈ a is weakly curved.
(4) an A∞-structure (or A∞-category) if m0 = 0.

In the cA∞-category a we distinguish the full cA∞-subcategories

(1) al of l-curved objects (l ∈ L), called the l-curved part of a.
(2) awc of weakly curved objects, called the weakly curved part of a.
(3) a∞ of uncurved objects, called the infinity part of a.

Remark 2.50. Let a be a filtered cA∞-category. The full cA∞-subcategory

(1) al is l-curved (l ∈ L).
(2) awc is weakly curved.
(3) a∞ is an A∞-category.

Remark 2.51. Suppose we add a top element ∞ to L in order to obtain L∞
as in Example 2.4, and suppose we naturally extend all L-filtered modules
M in the definition of the filtered cA∞-category a by F∞M = 0. Then a
naturally becomes an L∞-filtered cA∞-category. An object A ∈ a is ∞-
curved if and only if it is uncurved, and the notation a∞ is consistent with
the interpretation as full subcategory of ∞-curved objects.

Definition 2.52. A filtered cdg-category is a filtered cA∞-category (a,m)
with mn = 0 for n ≥ 3.

Remark 2.53. Cdg-categories are the categorical incarnation of cdg-rings, as
introduced by Positselski ([18]).

For a cdg-structure m = (m0,m1,m2), the identities (9) reduce to:

(14) m1(m0) = 0.

(15) m1m1 +m2(1⊗m0)−m2(m0 ⊗ 1) = 0.

(16) m1m2 −m2(1⊗m1)−m2(m1 ⊗ 1) = 0.

(17) m2(1⊗m2)−m2(m2 ⊗ 1) = 0.

Example 2.54. Let k be a commutative ground ring and let a be a filtered
k-linear category, i.e. the composition

m2 : a⊗ a −→ a

is a morphism of filtered k-quivers satisfying the associativity relation.
For Z-graded a-objects M = (Mn)n and N = (Nn)n, let Hom(M,N) be

the Z-graded filtered k-module with Hom(M,N)n =
∏
i∈Z a(M i, N i+n). A

precomplex of a-objects is a Z-graded a-object M endowed with an element
dM ∈ Hom(M,M)1, called the predifferential.
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We define the filtered quiver PCom(a) of precomplexes with

PCom(a)(M,N) = Hom(M,N).

It follows from a direct calculation that we can endow this quiver with a cdg-
structure (m0,m1,m2), where m2 is the composition of graded a-morphisms,

m1(f) = m2(dN , f)− (−1)nm2(f, dM )

for f ∈ Hom(M,N)n, and the curvature is given by

(m0)M = d2
M = m2(dM , dM ).

If dM ∈ F lHom(M,M), then (m0)M ∈ F2lHom(M,M).
We obtain the dg category of complexes Com(a) = PCom(a)∞ as the full

subcategory of uncurved precomplexes. The predifferential dM of a complex
by definition satisfies d2

M = 0, and is called the differential.

2.10. Filtered cA∞-quotients. Let S be a commutative ground ring and
let a be an S-linear cA∞-category.

Definition 2.55. A cA∞-ideal in a consists of an S-subquiver i ⊆ a such
that for all n ≥ i ≥ 1, A0, . . . , An ∈ a, we have

mn(a(An−1, An), . . . , i(Ai−1, Ai), . . . , a(A0, A1)) ⊆ i(A0, An).

Remark 2.56. Note that in Definition 2.55, no condition is imposed upon
m0.

Next we construct a quotient cA∞-category. Consider the S-quiver b =
a/i with b(A,A′) = a(A,A′)/i(A,A′) as S-modules. We denote a(A,A′) −→
b(A,A′) : a 7−→ [a].

Proposition 2.57. There exists an S-linear cA∞-structure m̃ = (m̃n)n≥0

on b with
m̃A

0 = [mA
0 ] ∈ a(A,A)/i(A,A)

and m̃n : b(An, An−1)⊗ · · · ⊗ b(A0, A1) −→ b(A0, An) given by

m̃n([an], . . . , [a1]) = [mn(an, . . . a1)]

for n ≥ 1.

Proof. The operations m̃n are well defined since i ⊆ a is a cA∞-ideal, and
they obviously satisfy the cA∞-relation m̃{m̃} = 0. �

Remark 2.58. Suppose k is a filtered S-algebra and a a filtered k-linear cA∞
category. Let i ⊆ a be a k-subquiver which is a cA∞-ideal in a. We can
endow i with the canonical filtration F li = i∩F la and a/i with the filtration
F l(a/i) = F la/F li. As such, the quotient a/i becomes a filtered k-linear
cA∞-category with the structure from Proposition 2.57.

Remark 2.59. If mA
0 ∈ i(A,A) for A ∈ a, then m̃A

0 = 0 ∈ b(A,A) whence
A is uncurved for m̃. Consequently, if mA

0 ∈ i(A,A) for all A ∈ a, m̃ is an
A∞-structure on b.

Example 2.60. Let a be a filtered k-linear cA∞-category. For l ∈ L, the k-
subquiver F la ⊆ a is a cA∞-ideal. If a is l-curved, then the k-linear quotient
a/F la is an A∞-category.
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Remark 2.61. In Example 2.60, if l 6= 0 and F la 6= a, the non-trivial A∞-
quotient a/F la protects a against some of the notoriously bad behaviour of
cA∞-categories, as we’ll see later on in §3.6.2.

3. Curved functor categories

In this section, we investigate appropriate notions of morphisms between
cA∞-categories and the possibility of defining functor categories. Through
the bar construction, a cA∞-category corresponds to a certain cocategory
and it is natural to base the morphisms of cA∞-categories upon the existence
of suitable induced morphisms of cocategories. This leads to the notion of
a cA∞-functor, as in Definition 3.9. This notion is based upon the more
primitive notion of qA∞-functor as in Definition 3.11, for which no structure
compatibilities are required. In §3.3, the relation with Positselski’s notion
of qdg functors is discussed.

One of the standout features of the curved world is that it is in general
impossible to view a curved dg algebra as a left or right module over itself.
More generally, representable modules over a cA∞-category can be written
down, but fail to define cA∞-functors. The heart of this section lies in
§3.4, where the notion of qA∞-functor is used in the definition of a functor
category qFun(a, b) between cA∞-categories a and b which is itself cA∞
(Theorem 3.37). This category has the beautiful property that its uncurved
objects are precisely the cA∞-functors (Proposition 3.27). A variant upon
these categories will be used in §4 in the definition and study of module
categories.

In §3.5, we introduce the notion of homotopy in order to relax the notion of
equivalence between cA∞-categories to that of cA∞-homotopy equivalence,
and we investigate the relation with the categories qFun(a, b).

In §3.6, we discuss the difference between cA∞-homotopy equivalence in
the filtered setting, in comparison with the unfiltered setting where it is
known that the corresponding notion trivializes the theory.

3.1. qA∞-functors. Consider filtered quivers a and b. Consider a map
f : Ob(a) −→ Ob(b) and an element F ∈ C1(a, b̂)f , i.e. a collection F =

(Fn)n∈N of filtered elements Fn : (Σa)⊗n −→ Σb̂ homogeneous of degree
0. We will freely interpret F = (Fn)n∈N as a collection of filtered elements

Fn : a⊗n −→ b̂ homogeneous of degree 1− n. In particular, we have

F0 = (FA0 )A ∈
∏
A∈a

b̂1(f(A), f(A)).

For n ≥ 1, consider the morphism of quivers F̂n given by

Ba
∆(n−1)

// (Ba)⊗n
F⊗n
// (Σb̂)⊗n

and put F̂0 = kOb(f)p0. For k, n,m ∈ N, let Kk,n be the collection of
n+ 1-tuples of natural numbers k = (0 = k0, k1, . . . , kn = k) with ki−1 ≤ ki.
For k ∈ Kk,n and x = x1 ⊗ · · · ⊗ xk ∈ Σa⊗k, put

F̂k(x) = (−1)αFk1(x1, . . . , xk1)⊗. . . Fki−ki−1
(xki−1+1, . . . , xki) · · ·⊗Fkn−kn−1(xkn−1+1, . . . , xkn).
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Here, if we have ki−1 = ki, we insert a factor F0(1) into the tensor product.
We have

F̂n(x) =
∑

k∈Kk,n

F̂k(x).

In the following characterization of morphisms, we use the tensor conver-
gent collections from Definition 2.35.

Lemma 3.1. The following are equivalent.

(1) The element F0 = (FA0 )A is tensor convergent with respect to the

filtered quiver b̂ and the map f : Ob(a) −→ Ob(b̂).
(2) There exists a unique morphism of formal counital cocategories

F̂ : B̂a −→ B̂b

with underlying map f and such that p1F̂ = F̂1 = F .

In this case, the morphism F̂ also satisfies pnF̂ = F̂n for all n ≥ 0, and we
have F̂ =

∑
n∈N F̂n.

Proof. It is easily seen that in order to satisfy (2), we need the expression

F̂ =
∑

n F̂n to have a convergent evaluation upon any x = x1 ⊗ · · · ⊗ xk ∈
Σa⊗k. Let Kk,n

m ⊆ Kk,n be the subcollection of k such that for exactly m

of the values i ∈ {1, . . . , n} we have ki−1 = ki. Let Kk
m = ∪n∈NKk,n

m . Note
that the set Kk

m is finite. We can thus rearrange the expression

(18)
∑
n∈N

F̂n(x) =
∑
m∈N

(
∑
n∈N

∑
k∈Kk,n

m

F̂k(x)).

Tensor convergence of F0 is equivalent to the fact that for all l ∈ L, there

exists ml ∈ N with for all m ≥ ml, for all n ∈ N and for all k ∈ Kk,n
m , we

have
F̂k(x) ∈ F lB̂b.

This is in turn equivalent to (18) defining a unique element in B̂b. �

Remark 3.2. Note that in Lemma 3.1, we have in particular

F̂ (1A) =
∑
m∈N

(FA0 )⊗m.

Definition 3.3. Consider filtered quivers a and b. A qA∞-functor from
a to b with underlying map f : Ob(a) −→ Ob(b) is given by an element

F ∈ C1(a, b̂)f with F0 tensor convergent.
The qA∞-functor F is called strict if F0 = 0.

We denote the subset of qA∞-functors with underlying f by

C1
q∞(a, b̂)f ⊆ C1(a, b̂)f .

The set of all qA∞ functors from a to b is denoted by qFun(a, b).

Remarks 3.4. (1) Obviously, any element F ∈ C1(a, b̂)f with F0 = 0
defines a strict qA∞-functor.

(2) For a strict qA∞-functor F ∈ C1(a, b̂)f , there is an induced mor-
phism F̄ : Ba −→ Bb of counital cocategories, whose completion is
F̂ .
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(3) We will use the term qA∞-functor both for the element F ∈ C1(a, b̂)f
and for the induced morphism of formal counital cocategories F̂ :
B̂a −→ B̂b.

Example 3.5. For a quiver a, consider the map 1 = 1Ob(a) : Ob(a) −→ Ob(a).

Consider the element Ia ∈ C1(a, â)1 with

(Ia)1 = (1a(A,A) : a(A,A′) −→ a(A,A′))A,A′

and (Ia)n = 0 for n 6= 1. Then Ia is a strict qA∞-functor, and the corre-
sponding morphism of formal counital cocategories is given by the identity
morphism 1B̂a : B̂a −→ B̂a.

Proposition 3.6. Consider filtered quivers a, b and c and maps f : Ob(a) −→
Ob(b), g : Ob(b) −→ Ob(c). Consider F ∈ C1

q∞(a, b̂)f and G ∈ C1
q∞(b, ĉ)g

with induced morphisms of formal counital cocategories F̂ : B̂a −→ B̂b and
Ĝ : B̂b −→ B̂c. The composition ĜF̂ : B̂a −→ B̂c is a morphism of formal
counital cocategories corresponding to GF̂ ∈ C1

q∞(a, ĉ)gf with

(GF̂ )(x) =
∑
n≥0

G(F̂n(x))

for x ∈ Ba.

Definition 3.7. Consider filtered quivers a, b and c. The composition of
qA∞-functors is given by the operation

∗ : qFun(b, c)× qFun(a, b) −→ qFun(a, c) : (G,F ) 7−→ G ∗ F = GF̂ .

By Proposition 3.6, the operation ∗ is associative, and in accordance with
Example 3.5, the morphims Ia are identities with respect to ∗. We thus
obtain a category of quivers with qA∞-morphisms, determining the notion
of qA∞-isomorphism as follows:

Definition 3.8. A qA∞-functor F ∈ C1
q∞(a, b̂)f is a qA∞-isomorphism if

there exists a qA∞-morphism G ∈ C1
q∞(b, â)g, the inverse isomorphism,

with f and g inverse bijections and G ∗ F = Ia and F ∗G = Ib.

3.2. cA∞-functors. In order to avoid taking too many completions in our
notations, from now on, without loss of generality, we assume that all origi-
nal quivers a, b, c, . . . under consideration are complete with respect to their
filtration.

In order to make a qA∞-functor into a morphism between filtered cA∞-
categories, we need to impose a compatibility condition with the cA∞-
structures:

Definition 3.9. Consider cA∞-categories (a,m) and (b,m′). A cA∞-functor
from a to b with underlying map f : Ob(a) −→ Ob(b) is a qA∞-functor

F ∈ C1
q∞(a, b)f

such that F̂ is a complete formal morphism of differential graded cocate-
gories, i.e.

(19) F̂ m̂ = m̂′F̂

for m̂ and m̂′ are as in Remark 2.45 and F̂ as in Lemma 3.1.
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Remark 3.10. Using the explicit formulations (see Remark 2.45 and Lemma
3.1) in condition (19), we see that F ∈ C1

q∞(a, b)f defines a cA∞-functor if
and only if it satisfies
(20)∑
j+k+l=p

(−1)jk+lFj+l+1(1⊗j ⊗mk ⊗ 1⊗l) =
∑

i1+...+ir=p

(−1)sm′r(Fi1 , . . . , Fir)

where for p ≥ 2 we have s =
∑

2≤u≤r

(
(1− iu)

∑
1≤v≤u−1 iv

)
, and for p = 1

we have that s = 1.
Note that for p = 0 the right-hand side of (20) is given by

m′0 +m′1(F0) +m′2(F0, F0) + . . .

which exists in B̂b since m is filtered and
∑

n F
⊗n
0 ∈ B̂b.

We denote the subset of cA∞-functors with underlying f by

C1
c∞(a, b)f ⊆ C1

q∞(a, b)f .

The set of all cA∞ functors from a to b is denoted by cFun(a, b) ⊆ qFun(a, b).
By Remark ??, the composition of qA∞-functors from Definition 3.7 re-

stricts to a composition of cA∞-functors

∗ : cFun(b, c)× cFun(a, b) −→ cFun(a, c) : (G,F ) 7−→ G ∗ F = GF̂ .

Obviously, we have Ia ∈ C1
c∞(a, â)1 and we obtain a category of cA∞-

categories with cA∞-morphisms, determining the notion of cA∞-isomorphism
to be a cA∞-functor which is a qA∞-isomorphism in the sense of Definition
3.8 whose inverse isomorphism is also a cA∞-functor.

Definition 3.11. Consider A∞-categories (a,m) and (b,m′). An A∞-
functor (or A∞-morphism or morphism of A∞-categories) from a to b is
a strict cA∞-functor F : a −→ b from a to b.

Next we discuss how the notion of cA∞-functor is related to related no-
tions in the literature. The conclusions are based upon Propositions 2.36
and 2.37.

Example 3.12. Consider L = S = {0,∞}. An element F ∈ C1(a, b)f with

FA0 = 0 defines a strict qA∞-functor, which is cA∞ as soon as (20) holds. If
{0} ⊆ k is radical and every b(B,B) is a free, canonically filtered k-module,
these are the only qA∞-functors.

Suppose on the other hand that X is a k-module and b is the one object
quiver b = Hom(Xn, Xn). Then as soon as FA0 is upper triangular for every
A, F is tensor convergent and defines a qA∞-functor (see [2]).

Example 3.13. Let k be commutative ring with an ideal I ⊆ k and canoni-
cally I-adically filtered cA∞-categories a and b. Note that a is weakly curved
if and only if it is uniformly weakly curved if and only if it is 1-curved, i.e.
mA

0 ∈ Ia(A,A) for all A ∈ a. In case I is the maximal ideal of a local ring,
these are precisely the wcA∞-categories considered by Positselski in [17, §7].
Consider an element F ∈ C1(a, b)f . Suppose that FA0 ∈ Ia(f(A), f(A)) for
every A ∈ a. Then F defines a qA∞-functor, which is cA∞ as soon as
(20) holds. If I is a radical ideal, and every b(B,B) is free, these are the
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only qA∞-functors. In case I is the maximal ideal of a local ring, F is a
cA∞-functor precisely when it is a wcA∞ functor in the sense of [17, §7].

Example 3.14. Consider L = R+, S a reduced commutative ring and k =
S[[R+]] as in Example 2.20 and canonically k-filtered cA∞-categories a and
b. Consider an element F ∈ C1(a, b)f . Suppose there is a λ ∈ R+

0 such

that FA0 ∈ tλa(f(A), f(A)) for every A ∈ a. Then F defines a qA∞-functor,
which is cA∞ as soon as (20) holds. If S is reduced, and every b(B,B) is
free, these are the only qA∞-functors. In the case of the universal Novikov
ring Q[ξ][[R+]] and one object quivers, cA∞-categories and cA∞-functors
correspond precisely to filtered A∞-categories and filtered A∞-functors in
the sense of [5, §3.2.2], as used in the context of Fukaya categories.

3.3. qdg-functors and cdg-functors. We will now consider cdg-categories,
and describe the cdg-analogons of cA∞-functors, qA∞-functors and A∞-
functors.

Definition 3.15. Let (a,m) and (b,m′) be cdg-categories. A cdg-functor
with underlying map f : Ob(a) −→ Ob(b) is a cA∞-functor F with Fn = 0
for n ≥ 2.

Proposition 3.16. Consider cdg-categories (a,m) and (b,m′) and an ele-
ment F = (F0, F1) with

F0 = (FA) ∈
∏
A∈a

b(f(A), f(A))1

and

F1 = (FA,A′) ∈
∏

A,A′∈a
Hom0

k

(
a(A,A′), b(f(A), f(A′)

)
The element F is a cdg-functor provided the following identities hold:

(21) F1(m0) = m′0 +m′1(F0) +m′2(F0, F0)

(22) F1m1 = m′1F1 −m′2(F1 ⊗ F0) +m′2(F0 ⊗ F1)

(23) F1m2 = m′2(F1 ⊗ F1)

Proof. The identities (21), (22) and (23) are the explicit formulations of the
identities (20) in the case of cdg-categories. �

Definition 3.17. [19, §1.4] Let (a,m) and (b,m′) be cdg-categories. A
qdg-functor with underlying map f : Ob(a) −→ Ob(b) consists of the same
datum F ∈ C1(a, b)f as a cdg-functor, but from the conditions (21), (22),
and (23), condition (21) is omitted.

Remark 3.18. Just like the notion of a qA∞-functor constitutes a relaxation
of the notion of a cA∞-functor, the notion of a qdg-functor constitutes a
relaxation of the notion of a cdg-functor. However, in the qdg case the re-
laxation is more restrictive as two structure compatibility conditions (22)
and (23) remain. It will turn out later on in Lemma 4.2 that the resulting
notion is sufficient in order to define represenatble modules over a cdg cate-
gory, wheras in the general case qA∞-functors are needed in order to define
representable modules over cA∞-categories.
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Definition 3.19. A dg-functor between dg categories is a strict cdg functor.

Next, we give an example of a non-strict cdg functor between dg cate-
gories.

Example 3.20. Consider the ring k as a one object dg-category, and let the
cdg category PCom(k) and the dg category Com(k) be as in Example 2.54.
We define the functor F : k −→ Com(k) by the underlying morphism

f : Ob(k) −→ Ob(Com(k)) : ∗ 7→ (M, δ)

where M is a complex with a non-zero differential δ (i.e. δ 6= 0, δ2 = 0),
and components F0, F1 given by

F0 : k −→ Com1(M,M) : 1k 7→ −δ
F1 : k −→ Com(M,M) : 1k 7→ IdM .

This is indeed defines a cdg-functor F , since we have that

mCom
0,M +m1(F0) +m2(F0, F0) = 0 + δF0 − (−1)F0δ + F0F0

= 0 = mk
0

m1(F1(1k)) +m2(F0, F1(1k)−m2(F1(1k), F0) = δIdM − IdMδ + (−δ)IdM + IdMδ

= 0 = F1(m1(1k))

F1(m2(1k, 1k)) = F1(1k)

= IdM = m2(F1(1k), F1(1k)).

By construction, the cdg-functor F is non-strict. Note that the example can
be repeated without effort for PCom(k) instead of Com(k).

3.4. The functor categories qFun and cFun. In order to consider the
category qFun(a, b) of qA∞-functors from a to b, we need a notion of pre-
natural transformations between qA∞-functors. This notion will be inspired
upon the definitions and constructions from [3, §7], modified to meet the
qA∞ framework.

Let F,G : a −→ b be qA∞-functors with underlying morphism respec-
tively f and g. Consider for all A,B ∈ a collections of filtered morphisms,
which are homogeneous of degree t

ηk(A,B) : Bka(A,B) −→ Σb(f(A), g(B))

with k ≥ 1 for A 6= B and k ≥ 0 for A = B.
From now we simply write ηk : Bka −→ Σb as we assume the objects to

be clear from the context.

Proposition 3.21. (see [3, Lemma 7.45]). For each family (ηk : Bka −→
Σb)k as above, there is a unique (Ĝ, F̂ )-coderivation η̂ : B̂a −→ B̂b such
that

p1η̂|Bka = ηk.

Proof. Using the notation of Remark 2.39, it is clear that the required mor-
phism η̂ is given by

η̂(x) =
∑
a

(−1)|η||x
1
a|Ĝ(x1

a)⊗ η(x2
a)⊗ F̂ (x3

a)

where η(x2
a) = ηk(x

2
a) when x2

a ∈ Bka. �
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Remark 3.22. Note that the expression η̂ is well-defined by the definition of
a qA∞-functor.

Definition 3.23. We call a family η = (ηk)k as in Proposition 3.21, or the

associated (Ĝ, F̂ )-coderivation η̂ a pre-natural transformation from F to G.

Notation 3.24. At this point, we would like to comment upon the notations.
Firstly, we will always denote

(1) the multiplicative structure on a quiver by the letter m.
(2) functors by capital letters F , G, . . ..
(3) pre-natural transformations by greek letters η, κ, . . ..

Secondly, the notation ˆ(−) is used to indicate the morphism on the level
of the completed bar-constructions associated to the argument. We have
encountered three such associated morphisms, namely m̂, F̂ and η̂. The first
one is associated to a multiplicative structure m on a quiver (see Remark
2.45), the second one is associated to a functor F (see Proposition 3.1) and
the last one is associated to a pre-natural transformation η (see Proposition

3.21). Note that in each case, the construction of ˆ(−) is different, yet we
use the same notation.

In the light of future calculations, we now look at some of the interactions

between the different ˆ(−) constructions.

Proposition 3.25. Consider cA∞-categories (a,m) and (b,m′), qA∞-functors
F,G : a −→ b and a pre-natural transformation η : F −→ G. We then have
that

(1) m̂′F̂ = F̂ ⊗m′(F̂ )⊗ F̂
(2) F̂ m̂ = F̂ ⊗ F (m̂)⊗ F̂
(3) m̂′η̂ = m̂′Ĝ⊗ η ⊗ F̂ + Ĝ⊗m′(η̂)⊗ F̂ + Ĝ⊗ η ⊗ m̂′F̂
(4) η̂m̂ = Ĝm̂⊗ η ⊗ F̂ + Ĝ⊗ η(m̂)⊗ F̂ + Ĝ⊗ η ⊗ F̂ m̂

Proof. Consider x = x1 ⊗ . . .⊗ xr ∈ Bra
(1)

m̂′F̂ (x) = m̂′(
∑
n

F̂n(x))

= m̂′(
∑
n

∑
a

F (x1a)⊗ . . .⊗ F (xna))

=
∑
n

∑
j+k+l=n

(
1⊗j ⊗m′k ⊗ 1⊗l)(∑

a

F (x1a)⊗ . . .⊗ F (xna))

=
∑
n

( ∑
j+k+l=n

F (x1a)⊗ . . .⊗ F (xja)⊗m′k(F (xj+1
a )⊗ . . .⊗ F (xj+k

a ))⊗ F (xj+k+1
a )⊗ . . .⊗ F (xna)

)
= F̂ ⊗m′(F̂ )⊗ F̂

(2)

F̂ m̂(x) = F̂
( ∑
j+k+l=n

x1 ⊗ . . .⊗ xj ⊗mk(xj+1 ⊗ . . .⊗ xj+k)⊗ xj+k+1 ⊗ . . .⊗ xr
)

=
∑
n

∑
a

F (y1a)⊗ . . .⊗ F (xu ⊗ . . .⊗mq(xv+1 ⊗ . . .⊗ xv+q)⊗ . . .⊗ xw)⊗ . . .⊗ F (yna )

= F̂ ⊗ F (m̂)⊗ F̂
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where

∆(n−1)(x1⊗ . . .⊗xj⊗mk(xj+1⊗ . . .⊗xj+k)⊗xj+k+1⊗ . . .⊗xr) =
∑
a

y1a⊗ . . .⊗yna

and xu⊗ . . .⊗mq(xv+1⊗ . . .⊗ xv+q)⊗ . . .⊗ xw = yja for a certain j.
(3) Analogous to (1).
(4) Analogous to (2).

�

3.4.1. The cA∞-category qFun(a, b). Let qFun(a, b) be the k-quiver consist-
ing of the qA∞-functors a −→ b as objects, and morphisms-sets given by
the Z-graded modules of pre-natural transformations. Consider F,G two
qA∞-functors in qFun(a, b). In order to simplify the notation, we denote the
set of morphisms qFun(a, b)(F,G) by qFun(F,G) when the categories a and
b are clear from the context.

The k-quiver qFun(F,G) is endowed with an induced filtration over L,
namely for l ∈ L the component F lqFun(F,G) is defined as

F lqFun(F,G) = {η ∈ qFun(F,G) | ∀p ∈ L,∀k ∈ N : ηk(Fpa⊗k) ⊂ Fp+lb}

We will now introduce multiplications (Mk)k on this quiver, that will
endow it with the structure of a cA∞-category.

Definition 3.26. The curvature MF
0 of a qA∞-functor F : a −→ b is defined

by

MF
0 = p1(m̂′F̂ − F̂ m̂).

Hence, the curvature somehow measures how close the functor is to being
a cA∞-functor. In particular, we have:

Proposition 3.27. A qA∞-functor F is a cA∞-functor if and only if

MF
0 = 0.

Lemma 3.28. Let F : a −→ b be a qA∞-functor. Then the expression
m̂′F̂ − F̂ m̂ is an (F̂ , F̂ )-coderivation.

Proof. We have:

∆(m̂′F̂ − F̂ m̂) = (m̂′ ⊗ 1 + 1⊗ m̂′)∆F̂ − (F̂ ⊗ F̂ )∆m̂

= (m̂′ ⊗ 1 + 1⊗ m̂′)(F̂ ⊗ F̂ )∆− (F̂ ⊗ F̂ )(m̂⊗ 1 + 1⊗ m̂)∆

=
(
F̂ ⊗ (m̂′F̂ − F̂ m̂) + (m̂′F̂ − F̂ m̂)⊗ F̂

)
∆

�

Remark 3.29. By Proposition 3.21, the previous lemma implies that

M̂F
0 = m̂′F̂ − F̂ m̂

Definition 3.30. The multiplication M1 : qFun(F,G) −→ qFun(F,G) is
defined by

M1(η) = p1δη

where δη = m̂′η̂ + (−1)|η|η̂m̂.
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Proposition 3.31. Let η be an element of qFun(F,G). We then have that

∆δη −
(
Ĝ⊗ δη + δη ⊗ F̂

)
∆ =

(
MG

0 ⊗ η̂ + η̂ ⊗MF
0

)
∆

Proof.

∆δη = ∆
(
m̂′η̂ + (−1)|η|η̂m̂

)
= (m̂′ ⊗ 1 + 1⊗ m̂′)∆η̂ + (−1)|η|∆η̂m̂

= (m̂′ ⊗ 1 + 1⊗ m̂′)(Ĝ⊗ η̂ + η̂ ⊗ F̂ )∆

+ (−1)|η|(Ĝ⊗ η̂ + η̂ ⊗ F̂ )∆m̂

= (m̂′ ⊗ 1 + 1⊗ m̂′)(Ĝ⊗ η̂ + η̂ ⊗ F̂ )∆

+ (−1)|η|(Ĝ⊗ η̂ + η̂ ⊗ F̂ )(m̂⊗ 1 + 1⊗ m̂)∆

=
(
Ĝ⊗ (m̂′η̂ + (−1)|η|η̂m̂) + (m̂′η̂ + (−1)|η|η̂m̂)⊗ F̂

)
∆

+
(
MG

0 ⊗ η̂ + η̂ ⊗MF
0

)
∆

=
(
Ĝ⊗ δη + δη ⊗ F̂

)
∆ +

(
MG

0 ⊗ η̂ + η̂ ⊗MF
0

)
∆

�

Remark 3.32. The previous proposition shows that the expression δη is in
general not a (Ĝ, F̂ )-coderivation. This is why we have to define the mul-
tiplication M1 be means of the projection p1δη, and thus M1 is a kind of
“coderivationification” of δη.

Since the obstruction to being a coderivation is expressed by means of

the curvature elements, by Proposition 3.21 the associated coderivation δ̂η
is not given by m̂′η̂ + (−1)|η|η̂m̂, unless both F and G are cA∞-functors.

Definition 3.33. We call a pre-natural transformation η a natural trans-
formation if and only if it is M1-closed, i.e. M1(η) = 0.

Remark 3.34. Writing out the condition that M1(η) = 0, we see that this is
equivalent to the identity∑
i1+i2+i3=p

(−1)ξm′i1+i3+1((Ĝ)i1 , ηi2 , (F̂ )i3) =
∑

j+k+l=p

(−1)jk+lηj+l+1(1⊗j⊗mk⊗1⊗l)

where (F̂ )i3 is the restriction of F̂ to Bi3a, and ξ is defined by the rule
explained in the proof of Proposition 3.21.

Finally, we define the higher multiplications Mk : qFun⊗k(F,G) −→
qFun(F,G) for k ≥ 2. To simplify the notations even further, we write
m(x) instead of mk(x) for x ∈ Bk(a). Let Fi, i = 0, . . . , k be qA∞-functors
from a to b with F0 = F and Fk = G. Further, consider ηi ∈ qFun(Fi−1, Fi),
i = 1, . . . , k pre-natural transformations, and x ∈ Ba. We define a pre-
natural transformation T = (Tl : Bla→ Σb)l given by

Tl(x) = −
∑
a

(−1)εam′
(
F̂k(x

1
a), ηk(x

2
a), . . . , η1(x2k

a ), F̂0(x2k+1
a )

)
where εa =

∑k
j=1

∑2j−1
i=1 |ηj ||xia|.
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Remark 3.35. This expression Tl(x) is well-defined, since we assumed our
cA∞-categories (thus in particular b) to be complete.

Definition 3.36. We define the multiplication Mk(ηk, . . . , η1), for k ≥ 2 by

Mk(ηk, . . . , η1) = T.

Theorem 3.37. The quiver qFun(a, b) endowed with the multiplications

M = (Mk)k≥0 ∈ C2 (qFun(a, b))

defined as above, has the structure of a cA∞-category (i.e. M̂M̂ = 0).

Proof. The fact that M defines a cA∞-structure, is expressed by the identity∑
j+k+l=p

(−1)jk+lMj+l+1(1⊗j ⊗Mk ⊗ 1⊗l) = 0

We start with p = 0. Since |MF
0 | = 2, we have

M1(MF
0 ) = p1

(
m̂′(m̂′F̂ − F̂ m̂) + (−1)|M

F
0 |(m̂′F̂ − F̂ m̂)m̂

)
= 0

Take p = 1, and consider a pre-natural transformation η. Using the
equalities from Proposition 3.25, we have

M1M1(η) = M1

(
p1
[
m̂′(
∑

Ĝ⊗ η ⊗ F̂ ) + (−1)|η|(
∑

Ĝ⊗ η ⊗ F̂ )m̂
])

= p1

[
m̂′(
∑

Ĝ⊗
[
p1
[
m̂′(
∑

Ĝ⊗ η ⊗ F̂ ) + (−1)|η|(
∑

Ĝ⊗ η ⊗ F̂ )m̂
]]
⊗ F̂ )

+(−1)|η|+1(
∑

Ĝ⊗
[
p1
[
m̂′(
∑

Ĝ⊗ η ⊗ F̂ ) + (−1)|η|(
∑

Ĝ⊗ η ⊗ F̂ )m̂
]]
⊗ F̂ )m̂

]
= m′

(∑
Ĝ⊗m′(

∑
Ĝ⊗ η ⊗ F̂ )⊗ F̂

)
+ (−1)|η|m′(

∑
Ĝ⊗ ηm̂⊗ F̂ )

+ (−1)|η|+1m′(
∑

Ĝ⊗ η ⊗ F̂ )m̂− η m̂m̂︸︷︷︸
=0

= m′
(∑

Ĝ⊗m′(
∑

Ĝ⊗ η ⊗ F̂ )⊗ F̂
)

+ (−1)|η|+1
(
m′(−

∑
Ĝm̂⊗ η ⊗ F̂ +

∑
Ĝ⊗ η ⊗ F̂ m̂)

)
= m′m̂′︸ ︷︷ ︸

=0

(∑
Ĝ⊗ (

∑
Ĝ⊗ η ⊗ F̂ )⊗ F̂

)
+m′

(∑
Ĝ⊗m′(Ĝ)⊗ Ĝ⊗ η ⊗ F̂

)
−m′

(∑
Ĝ⊗ η ⊗ F̂ ⊗m′(F̂ )⊗ F̂

)
+ (−1)|η|+1

(
m′(−

∑
Ĝ⊗Gm̂⊗ Ĝ⊗ η ⊗ F̂ ) +m′(

∑
Ĝ⊗ η ⊗ F̂ ⊗ Fm̂⊗ F̂ )

)
=
∑

m′(Ĝ⊗ η ⊗ F̂ ⊗ p1(F̂ m̂− m̂′F̂ )⊗ F̂ )−
∑

m′(Ĝ⊗ p1(Ĝm̂− m̂′Ĝ)⊗ Ĝ⊗ η ⊗ F̂ )

= −M2(η,MF
0 ) + M2(MG

0 , η)

Here, the signs coming from the expressions m̂, η̂ and M̂1(η) have been
used but suppressed from the notation. An explicit calculation of the signs
is given in the last part of the proof of [3, Theorem-Definition 7.55].

The rest of the identities (with p ≥ 2) can be proven analogously to the
proof of [3, Theorem-Definition 7.55], keeping in mind that the different
expression for M1 will yield the appropriate apparitions of M0, as it did in
the case of p = 1. �
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Remark 3.38. Consider the functor category qFun(a, b), with a a cA∞-
category, and b a cdg-category. It is a direct consequence of the definition
of the cA∞-structure (Mk)k that qFun(a, b) is a cdg-category whenever b is
a cdg-category.

3.4.2. The A∞-category cFun(a, b). We now consider the relation between
the different functor categories qFun, cFun and Fun of qA∞-functors, resp.
cA∞-functors and A∞-functors.

Definition 3.39. Consider two cA∞-categories a and b. The cA∞-functor
category cFun(a, b) is the full cA∞-subcategory

cFun(a, b) =
(
qFun(a, b)

)
∞

consisting of the the cA∞-functors from a to b.

Remark 3.40. By definition, cFun(a, b) is an A∞-category. It is the cA∞-
incarnation of the classical A∞-structure of the A∞-functor category ([3,
Theorem-Definition 7.55]).

By Proposition 3.31, the differential on cFun(a, b) is given by

M̂1(η) = m̂′η̂ + (−1)|η| η̂m̂.

Definition 3.41. Consider twoA∞-categories a and b. The category Fun(a, b)
is the full A∞-subcategory of cFun(a, b), obtained by restricting the objects
to the A∞-functors from a to b, i.e. the strict cA∞-functors.

We will end this section by giving a description of the Hochschild complex
C(a) of a cA∞-category a by means of the functor category Fun(a, a).

Proposition 3.42. The Hochschild complex of a filtered cA∞-category a is
described by the complex

Fun(a, a)(Ida, Ida)

Proof. We know by definition that a pre-natural transformation η : Ida −→
Ida is given by homogeneous components of degree n

η0 ∈
∏
A∈a

Σa(A,A)

η1 ∈
∏

A,B∈a
Hom(Σa(A,B),Σa(A,B))

η2 ∈
∏

A,B,C∈a
Hom(Σa(B,C)⊗ Σa(A,B),Σa(A,C))

...

As such, it is clear that η ∈ Cn(a). We also have that

M1(η) = m(η̂) + (−1)|η|η(m̂)

= m(
∑

Îda ⊗ η ⊗ Îda) + (−1)|η|η(m̂)

= m{η}+ (−1)|η|η{m}
We have thus proven that the Hochschild complex C(a) can equivalently be
described as Func(a, a)(Ida, Ida). �
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Remark 3.43. Take F ∈ qFun(a, b). The components of its curvature element
are given by

MF
0 |0 = mb

0 +m1(F0) +m2(F0, F0) + . . .− F1(ma
0)

MF
1 |0 = m1(F1) +m2(F1, F0) +m2(F0, F1) + . . .− F1(m1)− F2(−,ma

0) + F2(ma
0,−)

MF
2 |0 = m1(F2) +m2(F2, F0) +m2(F0, F2) +m2(F1, F1) + . . .

− F1(m2) + F2(−,m1) + F2(m1,−)− F3(ma
0,−,−) + F3(−,ma

0,−)− F3(−,−,ma
0)

...

Suppose a and b are (uniformly) weakly curved. By definition of the mul-
tiplicative structures ma and mb, and of the functor F , we know that
MF

0 |0(1) ∈ F lb for some l > 0. However, we cannot conclude for any
l > 0 that for all p ∈ L we have that

MF
0 |k(Fpa⊗k) ⊂ F l+pb.

As such, the natural filtration on qFun(a, b) need not be weakly curved.

3.5. cA∞-equivalences. Based upon the notions of cA∞-categories, cA∞-
functors and natural transformations between them, we obtain a 2-category
of cA∞-categories. By introducing the notion of homotopy, we arrive at the
more relaxed notions of homotopic rather than isomorphic cA∞-functors and
homotopy equivalent rather than equivalent cA∞-categories respectively.

In this section, we extend work by Fukaya from [3] on A∞-homotopy
equivalences and functor categories to our setup of filtered cA∞-categories
and categories of cA∞-functors. The next two definitions generalize [3, Def-
inition 8.1] and [3, Definition 8.5].

Definition 3.44. Consider cA∞-categories a and b. Two cA∞-functors
F,G : a −→ b are homotopic to each other if and only if there are natural
transformation η : F −→ G, µ : G −→ F , and pre-natural transformations
κ : G −→ G and κ′ : F −→ F such that

M2(η, µ)− IdG = M1(κ)

M2(µ, η)− IdF = M1(κ′)

where the natural transformation IdF : F −→ F is defined by (IdF )0 =
IdF (X), and (IdF )n = 0 for all n ≥ 1.

Definition 3.45. A functor F : a −→ b between cA∞-categories is a cA∞-
homotopy equivalence if and only if there exists a cA∞-functor G : b −→ a
such that F ∗G is homotopic to Idb and G ∗ F is homotopic to Ida.

A functor F : a −→ b between A∞-categories is an A∞-homotopy equiva-
lence if and only if there exists an A∞-functor G : b −→ a such that F ∗G
is homotopic to Idb and G ∗ F is homotopic to Ida.

Remark 3.46. The operation ∗ is the composition of qA∞-functors, as de-
fined in Definition 3.7.

In the A∞-setup, we have the following important result:
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Proposition 3.47. [15, Theorem 8.8] An A∞-functor F : a −→ b between
A∞-categories is an A∞-homotopy equivalence if and only if the morphisms

F1 : (a(A,A′),ma
1) −→ (b(f(A), f(A′)),mb

1)

are homotopy equivalences of chain complexes and the induced functor H0F :
H0a −→ H0b is essentially surjective.

Remark 3.48. In the case where k is a field, it is well known that homotopy
equivalences and quasi-isomorphisms coincide. As such, over a field k, an
A∞-functor F is an A∞-homotopy equivalence if and only if F1 is a quasi-
isomorphism, and F is essentially surjective in H0. Over an arbitrary ring,
we call this latter notion a quasi-equivalence.

The next two propositions extend [3, Prop 8.41].

Proposition 3.49. Consider cA∞-categories a, b and c. A cA∞-functor
F : a −→ b induces a strict cA∞-functor F ∗ : qFun(b, c) −→ qFun(a, c)
with underlying morphism f∗(G) = G ∗ F , where ∗ is the composition of
qA∞-functors (see Definition 3.7).

Proof. Let ηi ∈ qFun(b, c)(Gi−1, Gi) be a pre-natural transformation of de-
gree ti. We define F ∗ by

(F ∗)1(η1)(x) = η1(F̂ (x))

(F ∗)k(ηk, . . . , η1)(x) = 0 ∀k ≥ 2

where x ∈ Ba.
This is indeed a cA∞-functor, since we have for p = 0

(F ∗)1(M
qFun(b,c)
0,G ) = (F ∗)1(mcĜ−Gm̂b)

= (mcĜ−Gm̂b)(F̂ )

= mcĜF̂ −Gm̂bF̂

Since F is a cA∞-functor, we have that m̂bF̂ = F̂ m̂a, and thus that

(F ∗)1(M
qFun(b,c)
0,G ) = mcĜF̂ −GF̂m̂a

= M
qFun(a,c)
0,f∗(G)

For p = 1, we find

(F ∗)1(M1(η)) = (F ∗)1(mcη̂ − ηm̂b)

= (mcη̂ − ηm̂b)F̂

= mcη̂F̂ − ηF̂ m̂a

= M1((F ∗)1(η))

and for p ≥ 2, we have by definition of the cA∞-structure on qFun(a, c)

(F ∗)1(Mp(ηp, . . . , η1)) = (Mp(ηp, . . . , η1))F̂

= Mp(ηpF̂ , . . . , η1F̂ )

= Mp((F
∗)1(ηp), . . . , (F

∗)1(η1))

�
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Proposition 3.50. Consider cA∞-categories a, b and c. A cA∞-functor
F : a −→ b induces a strict cA∞-functor F∗ : qFun(c, a) −→ qFun(c, b)
with underlying morphism f∗(G) = F ∗ G, where ∗ is the composition of
qA∞-functors (see Definition 3.7).

Proof. Let ηi ∈ qFun(c, a)(Gi−1, Gi) be a pre-natural transformation of de-
gree ti. We define F∗ by:

(F∗)k(ηk, . . . , η1)(x) =
∑
a

(−1)εaF (Ĝk(x
1
a), ηk(x

2
a), . . . , η1(x2k

a ), Ĝ0(x2k+1
a ))

for every x ∈ Bc and where

εa =
k∑
j=1

2j−1∑
i=1

tj |xia|

This is indeed a cA∞-functor, since we have for p = 0

(F∗)1(M
qFun(c,a)
0,G ) = F (Ĝ,maĜ−Gm̂c, Ĝ)

= F (m̂aĜ− Ĝm̂c)

= mbF̂ Ĝ− FĜm̂c

= mbf̂∗(G)− f∗(G)m̂c

= M
qFun(c,b)
0,f∗(G)

For p = 1, we have by means of the equalities in Proposition 3.25 that

(F∗)1(M1(η)) = (F∗)1(maη̂ − ηm̂c)

= F (Ĝ′,maη̂ − ηm̂c, Ĝ)

= F (m̂aη̂ − η̂m̂c)− F (Ĝ′,maĜ′ −G′m̂c, Ĝ′, η, Ĝ)− F (Ĝ′, η, Ĝ,maĜ−Gm̂c, Ĝ)

= mbF̂ η̂ − F η̂m̂c − (F∗)2(M
qFun(c,a)
0,G′ , η)− (F∗)2(η,M

qFun(c,a)
0,G )

= M1((F∗)1(η))− (F∗)2(M
qFun(c,a)
0,G′ , η)− (F∗)2(η,M

qFun(c,a)
0,G )

The case for p ≥ 2 can be proven analogousy to the proof of [3, Theorem-
Definition 7.55]. As in the proof of Theorem 3.37, the fact that we are
working with qA∞-functors will yield the appropriate occurrences of the
curvature elements M0, as it did in the case of p = 1. �

We now obtain an extension of [3, Prop 8.49] to the cA∞-setting:

Proposition 3.51. Let a and b be cA∞-categories, and F : a −→ b a
cA∞-homotopy equivalence. Then

(1) the functor F ∗ : qFun(b, c) −→ qFun(a, c) is a cA∞-homotopy equiv-
alence, with G∗ as its homotopy-inverse.

(2) the functor F∗ : qFun(c, a) −→ qFun(c, b) is a cA∞-homotopy equiv-
alence, with G∗ as its homotopy-inverse.

Proof. Let F : a −→ b and G : b −→ a be the cA∞-homotopy equivalence
functors. I.e. there are natural transformations η : FG −→ Idb and η′ :
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Idb −→ FG which are homotopic. We thus have pre-natural transformations
κ and κ′ such that

M2(η, η′)− 1Idb
= M1(κ)

M2(η′, η)− 1FG = M1(κ′)

where 1Idb
is the identity transformation from the identity functor to itself.

Let T : a −→ c be a qA∞-functor, we then put

e0(T ) = (T∗)1(η) ∈ qFun(a, c)
(

(f∗g∗)(T ), T
)

ek = 0

Due to the fact that η is a natural transformation, so is e : F ∗G∗ −→
IdqFun(a,c). Completely analogously one defines the natural transformation
e′ : IdqFun(a,c) −→ F ∗G∗, and the pre-natural transformations h : IdqFun(a,c) −→
IdqFun(a,c) and h′ : F ∗G∗ −→ F ∗G∗, by means of resp. η′, κ and κ′.

By definition of the transformations, we now have

M2(e, e′)− 1IdqFun(a,c)
= M1(h)

M2(e′, e)− 1F ∗G∗ = M1(h′)

where M is the structure on cFunc
(
qFun(a, c), qFun(a, c)

)
.

We have thus proven that F ∗G∗ is homotopic to the identity. Analogously
one shows that G∗F ∗ is homotopic to the identity, and thus that qFun(a, c)
is cA∞-homotopy equivalent to qFun(b, c). The other cA∞-homotopy equiv-
alence is proven analogously by means of the functors F∗ and G∗. �

Remark 3.52. Since, in the proof of Proposition 3.51, the functors F ∗ and
G∗ are in fact strict cdg-functors and the (pre-)natural transformations e,
e′, h, h′ only have a 0-component, the cA∞-homotopy equivalence between
qFun(a, c) and qFun(b, c) is in fact a cA∞-homotopy equivalence by means
of strict cdg-functors.

Proposition 3.53. Take F,G : a −→ b homotopic cA∞-functors between
cA∞-categories. For every cA∞-functor K : a −→ b, we have that

H∗(cFunc(a, b)(F,K)) ∼= H∗(cFunc(a, b)(G,K))

Proof. Consider the natural transformation η : G −→ F and µ : F −→ G
expressing the homotopy. We define the maps (well-defined due to the fact
that η and µ are natural transformations)

u : H∗(cFunc(a, b)(F,K)) −→ H∗(cFunc(a, b)(G,K)) : ρ 7→M2(ρ, η)

v : H∗(cFunc(a, b)(G,K)) −→ H∗(cFunc(a, b)(F,K)) : ρ 7→M2(ρ, µ)
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Since M2(M2 ⊗ 1) = M2(1 ⊗M2) −M3(1⊗2 ⊗M1) −M3(1 ⊗M1 ⊗ 1) −
M3(M1 ⊗ 1⊗2)−M1(M3), it is clear that

(vu)(ρ) = M2(ρ,M2(η, µ))−M1(M3(ρ, η, µ))

= M2(ρ, IdF + M1(k))−M1(M3(ρ, η, µ))

= ρ+ M1(M2(ρ, k))−M2(M1(ρ), k)−M1(M3(ρ, η, µ))

= ρ+ M1

(
M2(ρ, k)−M3(ρ, η, µ)

)
Analogously, one proves that uv =Id, completing the proof of the announced
equivalence. �

3.6. Trivialization of cA∞-equivalences. In general, in the unfiltered
setting, the notions of homotopic cA∞-functors and cA∞-homotopy equiva-
lences are known to trivialize the theory of cA∞-categories in the sense that
too many categories become cA∞-homotopy equivalent. We first discuss the
unfiltered case, before turning our attention to the uniformly weakly curved
case.

3.6.1. Unfiltered setting. The following results, mostly due to Kontsevich,
can be found in [18, Remark 7.3].

Let us consider cA∞-algebras (a,m) and (b,m′) over a field k with nonzero
curvature elements that do not belong to the one-dimensional vector sub-
spaces generated by the units of a and b respectively. In this case, we can ex-
tend an isomorphism of graded vector spaces f : a −→ b, preserving the units
and curvature, to a cA∞-homotopy equivalence F = (f0, f1, f2, . . .) : a −→ b
with f0 = 0 and f1 = f .

This result implies the following:

Theorem 3.54. [10, Theorem 2.1] If (a,m) is a cA∞-algebra for which the
curvature m0 = c is nonzero, then (a,m) is cA∞-homotopy equivalent to
(a,m′), where m′0 = c and all higher multiplications m′i = 0 for i > 0.

If we consider the extension of Ida used in the previous theorem, we see
that the associated functor F is defined by the identities

m′0 = m0

0 = m′1(−) = m1(−) + f2(−,m0)− f2(m0,−)(24)

0 = m′1(f2) +m′2(−,−) = m2(−,−)− f2(−,m1)− f2(m1,−)

+ f3(m0,−,−) + f3(−,m0,−) + f3(−,−,m0)

...

For the convenience of the reader and for further reference, we briefly
sketch a possible approach to the trivialization result. Consider the restric-
tion d0 of the differential m̂ on Ba, to the components determined by m0.
We see that this is again a differential, and that (Ba, d0) is acyclic. Let us
now denote dn = m̂0 +

∑
k≥n+1 m̂k. Writing out the conditions, one finds

that there are coalgebra isomorphisms

Fn : (Ba, dn) −→ (Ba, dn+1)

with f1 = Ida and fk = 0 for k 6= n+ 1, commuting with the derivations dk.
As such we obtain a cA∞-homotopy equivalence (a,m) ∼= (a,m′).
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When we inspect these functors Fn in more detail, we see that e.g. F0 :
(Ba, d) −→ (Ba, d1) is defined by the identities

m0 = m0

0 = m1(−) + f2(−,m0)− f2(m0,−)(25)

m2(−,−) = m2(−,−)− f2(−,m1)− f2(m1,−)

...

The previous defining identities show how the components mn can be con-
structed by means of m0 and the higher components of a functor which has
the identity as its first component, leading to the trivialization.

3.6.2. Uniformly weakly curved setting. In this section, we consider uni-
formly weakly curved filtered cA∞-categories and we explain to what extent
the trivialization discussed in §3.6 can be avoided.

Let a be uniformly weakly curved with m0 ∈ F la for a certain l > 0.
Looking at the identities (24) and (25), we see that they are now sub-
ject to filtration restraints. Since the multiplications are filtered, we have
mk(Fλa⊗k) ⊂ Fλa, and since the functor F is filtered we have Fk(Fλa⊗k) ⊂
Fλa. Applying this for instance to the identity

m1(−) = f2(m0,−)− f2(−,m0)

we see that if it is fulfilled, we have m1(Fλa) ⊂ Fλ+la. Analogously we
obtain similar results for the higher multiplications. As such it is clear that
the required functors from the previous section generally do not exist in the
setting of uniformly weakly curved cA∞-categories.

Of course, this does not yet prove that trivialization cannot occur in the
setting of uniformly weakly curved cA∞-categories. However, the following
observation places a strong restraint upon the possibility of trivialization.

Let (a,m) be an l-curved cA∞-category, and let (a,m′) be the cA∞-
category with the same underlying quiver a, m′0 = m0 and m′i = 0 for all
i > 0. Suppose there is a cA∞-homotopy equivalence

F : (a,m) −→ (a,m′).

Since F , its homotopy-inverse and the pre-natural transformations express-
ing the homotopy are all filtered, we obtain an induced A∞-homotopy equiv-
alence

F̃ : (a/F la, m̃) −→ (a/F la, m̃′) = (a/F la, 0).

Hence, l-curved cA∞-categories with a non-trivial A∞-quotient are effec-
tively protected against trivialization. This explains why the Fukaya type
cA∞-categories (see Example 3.14) and the wcA∞-categories of Positselski
(see Example 3.13) give rise to non-trivial theories.

4. The curved Yoneda-Lemma

One of the standout features of the curved world is that in general, it
is not possible to construct representable cdg-modules over a cdg-category.
This situation was remedied by Polishchuk and Positselski in [19] by relaxing
the notion of cdg-modules to that of qdg-modules. Using this notion, it is
not hard to obtain a Yoneda type embedding, as explained in §4.1.
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The main goal of this section, which is adressed in §4.2, is to present a
cA∞-version of the Yoneda Lemma, inspired upon Fukaya’s treatment of
the A∞-case in [3, §9]. To do so, we define the relevant module category
Modq∞(a) as the functor category of strict qA∞-functors from a

op
to the

cdg category of precomplexes of k-modules. In particular, Modq∞(a) is
itself a cdg category, and inside we can define the full cA∞-subcategory of
representable modules Repq∞(a). In our main Theorem 4.15, we obtain a
cA∞-homotopy equivalence Y : a −→ Repq∞(a).

It is well known that in general, it is impossible to endow the tensor quiver
a⊗b of two A∞-categories with a natural A∞-structure. On the other hand,
as soon as one of the tensor factors is itself a dg category, a natural tensor
structure does exist. In §4.3, as an application of Theorem 4.15, we define
the Yoneda tensor product of two cA∞-categories by means of the standard
tensor product of the cdg categories of representable modules. The main
result of this section is the construction of a cA∞-structure on the tensor
product quiver of a cdg category and a cA∞-category in Proposition 4.19,
which is proven in Theorem 4.26 to be homotopy equivalent to the Yoneda
tensor product.

4.1. qdg-modules and Yoneda. Let a and b be cdg-categories. Recall
from Definition 3.17 that a qdg-functor from a to b with underlying map f :
Ob(a) −→ Ob(b) consists of the same datum F ∈ C1(a, b)f as a cdg-functor,
but from the conditions (21), (22), and (23), condition (21) is omitted.

Definition 4.1. [19, §1.4] A qdg-module over a cdg-category a is given by
a strict qdg-functor from a

op
to the cdg-category PCom(k) of precomplexes

of k-modules (see Example 2.54). Similarly, a cdg-module over a is a strict
cdg-functor from a

op
to PCom(k).

We thus know that a cdg-module (resp. qdg-module) M is given by an
underlying map

Ob(a) −→ Ob(PCom(k)) : A 7−→M(A)

and k-linear maps

MA,A′ : a(A,A′) −→ Hom(M(A′),M(A)) : f 7−→M(f)

fulfilling the conditions (21), (22), and (23) (resp. (22) and (23)).
For qdg-modulesM andN , we put Hom(M,N) ⊆

∏
A∈a Hom(M(A), N(A))

the graded k-module of natural transformations, where a natural transfor-
mation of degree n is given by a collection (ρA)A∈a with ρA ∈ Homn(M(A), N(A))
with for all f ∈ a(A,A′):

m′2(ρA′ ,M(f)) = (−1)n|f |m′2(N(f), ρA)

This defines the quiver Modqdg(a) of qdg-modules over a, and we know by
Remark 3.38 that it inherits a cdg-structure from the qdg-functor category.

We denote the cdg-structure on a by m and the one on PCom(k) by
mPCom. Since the pre-natural transformations between qdg-modules only
have a 0-component, and the qdg-modules are strict qdg-functors, we know
that the cdg-structure M on Modqdg(a) is such that:

• M2 is the composition of natural transformations based uponmPCom
2 ;
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• ((M1)M,N )A = (mPCom
1 )M(A),N(A);

• ((M0)M )A = (mPCom
0 )M(A) −M((m0)A).

Clearly, if we let Modcdg(a) denote the dg-category of cdg-modules on a, we
have

(Modqdg(a))∞ = Modcdg(a)

Lemma 4.2. Every object A in a cA∞-category a determines a representable
qdg-module with underlying morphism

a(−, A) : a
op −→ PCom(k) : B 7−→ (a(B,A), (m1)B,A)

and given by

a(−, A) : a(B,B′) −→ Hom(a(B′, A), a(B,A)) : f 7−→ a(f,A) = m2(−, f)

Proof. Consider f ∈ a(B,B′), g ∈ a(B′, B′′). We then have

(1) a(−, A)(mB
0 ) = m2(−,mB

0 ) 6= m1(m1) = mPCom
0,a(B,A)

(2) a(−, A)(m1(f)) = m2(−,m1(f)) = m1(m2(−, f)) − m2(m1, f) =
mPCom

1 (a(f,A))
(3) a(−, A)(m2(g, f)) = m2(−,m2(g, f)) = m2(m2(−, g), f) = mPCom

2 (a(−, A)(f), a(−, A)(g))

�

Note that in general, the representable qdg-modules fail to be cdg-modules.
Using the representable qdg-modules, we obtain a Yoneda embedding:

Proposition 4.3. There is a fully faithful strict cdg-embedding

Y = Y a
qdg : a −→ Modqdg(a) : A 7−→ a(−, A),

Y : a(A,A′) −→ Hom(a(−, A), a(−, A′)) : g 7−→ (m2(g,−))B∈a

Proof. The existence of the fully faithful embedding is based upon the
Yoneda Lemma for the underlying Z-graded k-linear categories. One veri-
fies that the resulting functor satisfies the cdg-axioms. By definition of the
multiplications on Modqdg(a) we have

(1) Y (m0) = m2(m0,−) = m1(m1) +m2(−,m0) = M0.
(2) Y (m1) = m2(m1,−) = m1(m2(−,−))−m2(−,m1) = M1(Y ).
(3) Y (m2) = m2(m2(−,−),−) = m2(−,m2(−,−)) = M2(Y, Y )

where the second equality in (3) comes from the fact that there are no higher
order multiplications. �

Definition 4.4. We define the category of representable qdg-modules,

Repqdg(a) ⊆ Modqdg(a)

as the full cdg-subcategory consisting of the objects {a(−, A)|A ∈ a}.

We thus obtain a strong equivalence of cdg categories Y : a −→ Repqcd(a).
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4.2. qA∞-modules and Yoneda. In this section, we consider a stricly
unital cA∞-category (a,m), and the category PCom(k) of filtered precom-
plexes (see Example 2.54). We denote the multiplicative structure of a by
m, whereas we denote the multiplications of PCom(k) by mPCom.

The category PCom(k) can be endowed with a natural filtration induced
by the filtered precomplexes. More precisely, for precomplexes M,N , we
put

F lPCom(M,N) = {f ∈ PCom(M,N)|∀p ∈ L : f(FpM) ⊂ Fp+lN}.

Definition 4.5. A qA∞-module over a is a strict qA∞-functor a
op −→

PCom(k). A cA∞-module over a is a strict cA∞-functor a
op −→ PCom(k).

We denote by

Modq∞(a) ⊆ qFun(a
op
,PCom(k))

the full cA∞-subcategory of qA∞-modules and by

Modc∞(a) ⊆ Modq∞(a)

the full cA∞-subcategory of cA∞-modules. Hence, the curvature of a qA∞-
module F is given by MF

0 = p1(m̂PComF̂ − F̂ m̂).

Remark 4.6. By Remark 3.38, Modq∞(a) is in fact a cdg-category, and
Modc∞(a) is a dg-category.

Using qA∞-modules, we can construct representable modules over a.

Definition 4.7. Let a be a cA∞-category, and consider an object A in a.
The representable module y(A) is given by the qA∞-functor

y(A) : a
op −→ PCom(k)

with underlying map

Ob(a
op

) −→ Ob(PCom(k)) : B 7→ (a(B,A),ma
1)

and components

(y(A)1)B,C : a(B,C) −→ PCom(k)
(
a(C,A), a(B,A)

)
: f 7→ m2(−, f);

(y(A)2)B,C : a⊗2(B,C) −→ PCom(k)
(
a(C,A), a(B,A)

)
: (g, f) 7→ m3(−, g, f);

...

Remark 4.8. The components of a representable module y(A) are filtered
with respect to the filtration on PCom(k). Indeed, for (fn, . . . , f1) ∈ F la⊗n(B,C),
we have mn+1(−, fn, . . . , f1) ∈ F lPCom(k)

(
y(A)(C), y(A)(B)

)
since m is fil-

tered.

Next, we calculate the curvature M
y(A)
0 = p1

(
m̂ŷ(A) − ŷ(A)m̂

)
of the

representable modules y(A). By Proposition 3.27, the representable module

y(A) is a cA∞-module if and only if M
y(A)
0 = 0.
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Lemma 4.9. The curvature M
y(A)
0 of the representable module y(A) is given

by the components

(M
y(A)
0 )0 = m2(m0,−) ∈ PCom(k)

(
a(B,A), a(B,A)

)
;

(M
y(A)
0 )1 : a(B,C) −→ PCom(k)

(
a(C,A), a(B,A)

)
: f 7→ m3(m0,−, f);

(M
y(A)
0 )2 : a⊗2(B,C) −→ PCom(k)

(
a(C,A), a(B,A)

)
: (g, f) 7→ m4(m0,−, g, f);

...

In particular, if m0 ∈ F la, it follows that M
y(A)
0 ∈ F lModq∞(a).

Proof. Writing out the expression p1

(
m̂ŷ(A)− ŷ(A)m̂

)
, we find for p = 0(

mPCom(ŷ(A))− y(A)(m̂)
)
0

= mPCom
0 + (y(A))1(m0)

= mPCom
0 +m2(−,m0)

= m1m1 +m2(−,m0)

= m2(m0,−)

for p = 1(
mPCom(ŷ(A))− y(A)(m̂)

)
1
(f) = mPCom

1 (y(A)1(f))− y(A)1(m1(f))− y(A)2(f,m0) + y(A)2(m0, f)

= m1(m2(−, f))−m2(m1(−), f)−m2(−,m1(f))−m3(−, f,m0) +m3(−,m0, f)

= m3(m0,−, f)

where the equalities are due to the cA∞-identities of the multiplication m
on a.

Analogously, one proves the cases for p ≥ 2. �

Remark 4.10. Lemma 4.9 shows that if A has non-zero curvature m0, in gen-
eral none of the cA∞-functor identities needs to be fulfilled by y(A). Unlike
in the cdg case, where a qdg-functor still satisfies some structure compatibil-
ity, we thus observe that the full relaxation of compatibility requirements in
the definition of qA∞-functors is necessary in order to capture representable
modules.

We now introduce a special kind of pre-natural transformations between
representable modules y(A), y(B), with A,B objects in a.

Definition 4.11. For (fn, . . . , f1) ∈ a⊗n(A,B), we define the pre-natural
transformation

m(fn, . . . , f1,−) : y(A) −→ y(B)

by the components(
m(fn, . . . , f1,−)

)
0

= mn+1(fn, . . . , f1,−) ∈ PCom(k)
(
a(C,A), a(C,B)

)
;(

m(fn, . . . , f1,−)
)

1
: a(C,D) −→ PCom(k)

(
a(D,A), a(C,B)

)
g 7−→ mn+2(fn, . . . , f1,−, g);(

m(fn, . . . , f1,−)
)

2
: a⊗2(C,D) −→ PCom(k)

(
a(D,A), a(C,B)

)
(g2, g1) 7−→ mn+3(fn, . . . , f1,−, g2, g1);

...
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Remark 4.12. As with the definition of representable modules, the compo-
nents of this pre-natural transformation are readily seen to be filtered (see
Remark 4.8).

Having introduced these pre-natural transformations between representable
qA∞-modules, we are now able to construct a cA∞-version of the Yoneda
embedding.

Proposition 4.13. Let (a,m) be a cA∞-category. There exists a strict
cA∞-functor

Y = Y a
q∞ : a −→ Modq∞(a)

given by the underlying map A 7→ y(A) and

(Y1)A,B : a(A,B) −→ Modq∞(a)(y(A), y(B)) : f 7→ m(f,−);

(Y2)A,B : a⊗2(A,B) −→ Modq∞(a)(y(A), y(B)) : (g, f) 7→ m(g, f,−);

...

Proof. Analogously to Remarks 4.8 and 4.12, the components of the Yoneda
functor are seen to be filtered.

We will check the cA∞-functor identities for Y . By Lemma 4.9, we have
for p = 0 that

Y1(m0) = m(m0,−) = (M0)Y (A).

For p = 1, we have to check for every f ∈ a(A,B) that the natural
transformations(
Y1(m1) + Y2(−,m0)− Y2(m0,−)

)
(f) = m(m1(f),−) +m(f,m0,−)−m(m0, f,−)

and(
M1(Y1)

)
(f) = M1(m(f,−))

= mPCom
1 (m(f,−)) +mPCom

2 (y(B),m(f,−)) +mPCom
2 (m2(f,−), y(A))−m(f,−, m̂)

are equal. We also check this component-wise.

For q = 0, we have that(
m(m1(f),−)+m(f,m0,−)−m(m0, f,−)

)
0

= m2(m1(f),−)+m3(f,m0,−)−m3(m0, f,−)((
M1(Y1)

)
(f)
)
0

= mPCom
1 (m2(f,−))−m3(f,−,m0)

= m1(m2(f,−))−m2(f,m1(−))−m3(f,−,m0)

By the cA∞-identities for the multiplication m on a, we know that
they are equal.
For q = 1, we have for every g ∈ a(C,D) that(

m(m1(f),−)+m(f,m0,−)−m(m0, f,−)
)
1
(g) = m3(m1(f),−, g)+m4(f,m0,−, g)−m4(m0, f,−, g)((

M1(Y1)
)
(f)
)
1
(g) = mPCom

1 (m3(f,−, g)) +mPCom
2 (m2(−, g),m2(f,−))) +mPCom

2 (m2(f,−),m2(−, g))

−m3(f,−,m1(g)) +m4(f,−,m0, g)−m4(f,−, g,m0)

= m1(m3(f,−, g))−m3(f,m1(−), g) +m2(m2(f,−), g) +m2(f,m2(−, g))

−m3(f,−,m1(g)) +m4(f,−,m0, g)−m4(f,−, g,m0)
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The equality is again due to the cA∞-identities for the multiplication
m on a
Analogously, one finds the equality for q ≥ 2.

In a similar fashion, one shows, by means of the cA∞-structure on Modq∞(a)
(which is actually a cdg-structure) and the cA∞-structure of a, that the
cA∞-functor identities also hold for p ≥ 2. �

Definition 4.14. The category of representable qA∞-modules is the full
cA∞-subcategory Repq∞(a) ⊆ Modq∞(a) consisting of the objects {y(A)|A ∈
a}.

We are now ready to prove our main theorem, which extends the situation
for A∞-categories [3, §9]. The constructions in the proof are inspired upon
[3, §8].

Theorem 4.15. Let (a,m) be a strictly unital cA∞-category. The Yoneda
functor Y : a −→ Repq∞(a) is a cA∞-homotopy equivalence. For l ∈ L, Y
restricts to a cA∞-homotopy equivalence Yl : al −→ Repq∞(a)l between the
full cA∞-subcategories of l-curved objects.

In particular, every (l-curved) cA∞-category is canonically cA∞-homotopy
equivalent to an (l-curved) cdg category.

Proof. The second statement easily follows from the first one by Lemma 4.9.
Put Rep(a) = Repq∞(a). We will construct a homotopy inverse Π :

Rep(a) −→ a of Y . We define the strict cA∞-functor Π with underlying
map y(A) = (a(−, A),ma

1) 7→ A and components

(Π1)A,B : Rep(a)(y(A), y(B)) −→ a(A,B) : η 7→ η0(1A);

(Π2)A,B : Rep(a)⊗2(y(A), y(B)) −→ a(A,B) : (η, µ) 7→
(
η1(µ0(1))

)
(1);

(Π3)A,B : Rep(a)⊗3(y(A), y(B)) −→ a(A,B) : (η, µ, ξ) 7→
(
η2(µ0(1), ξ0(1))

)
(1);

...

(Πk)A,B : Rep(a)⊗k(y(A), y(B)) −→ a(A,B) :

(η(k), . . . , η(1)) 7−→
(

(η(k))k−1

(
(η(k−1))0(1), . . . , (η(1))0(1)

))
(1)

for k ≥ 1. Here, the unit elements, denoted by 1, should be understood in
the appropriate way. For instance, if we consider

(η, µ, ξ) ∈ Rep(a)⊗3(y(A), y(B)) =
∏

C,D∈a
Rep(a)

(
y(D), y(B)

)
⊗Rep(a)

(
y(C), y(D)

)
⊗Rep(a)

(
y(A), y(C)

)
then Π3(η, µ, ξ) =

(
η2

(
µ0(1C), ξ0(1A)

))
(1D). In the rest of the proof, we

will stick to the shorthand notation 1. We first show that the components
of the functor Π are indeed filtered. For k ≥ 1, consider

(η(k), . . . , η(1)) ∈ F lRep(a)⊗k(y(A), y(B)) =
( ⋃
l1+...+lk=l

F lkRep(a)⊗. . .⊗F l1Rep(a)
)

(y(A), y(B)).

By definition of the filtration on Rep(a) we have(
(η(k−1))0(1), . . . , (η(1))0(1)

)
∈ F lk−1+...+l1a⊗k−1
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and (
(η(k))k−1

(
(η(k−1))0(1), . . . , (η(1))0(1)

))
(1) ∈ F lk+...+l1a

proving that Πk is filtered.
We will now show that Π is indeed a cA∞-functor. We have for p = 0

m0 =
(
m(m0,−)

)
0
(1) = Π1(M

y(A)
0 )

and, using the strict unitality of a, for p = 1[
Π1(M1) + Π2(−,My(A)

0 )−Π2(M
y(A)
0 ,−)

]
(η)

=
[
Π1(mPComη̂ − ηm̂)

]
+ Π2(η,M

y(A)
0 )−Π2(M

y(A)
0 , η)

= (mPcom(η0))(1)− (η1(m0))(1) + (η1(m0))(1)−m3(m0, 1, η0(1))

= m1(η0(1))− η0(m1(1))

= m1(η0(1))

= [m1(Π1)] (η)

Analogously, one checks the identities for p ≥ 2.
By Lemma 4.16, we have Π∗Y = Ida. In order to show that Y and Π are

cA∞-homotopy inverse to each other, we thus need natural transformations
µ : Y ∗Π −→ IdRep(a) and η : IdRep(a) −→ Y ∗Π that are inverse to each other.
We inductively define the candidate cA∞ natural transformations µ and η
through the same formulas as the A∞-natural transformations from [3, §8].
If we can show that, in our context, these are cA∞-natural transformations,
the rest of the proof (in particular, the fact that µ and η are inverse) will
follow from the same arguments as in [3, §8]. We only give the proof for
µ, because of the great similarity between µ and η. By construction, µ is a
family

µ0 : k −→ Rep(a)
(
y(A), y(A)

)
µ1 : Rep(a)

(
y(A), y(B)

)
−→ Rep(a)

(
y(A), y(B)

)
µ2 : Rep(a)⊗2

(
y(A), y(B)

)
−→ Rep(a)

(
y(A), y(B)

)
...

defined as:
µ0 = Idy(A)

µ1(ξ) is the pre-natural transformation given by[
µ1(ξ)

]
n

: a⊗n(D,C) −→ PCom(k)
(
y(A)(C), y(B)(D)

)
x 7−→

[
a(C,A)→ a(D,B) : g 7→

(
ξn+1(g, x)

)
(1A)

]
µ2(ξ, ν) is the pre-natural transformation given by[
µ2(ξ, ν)

]
n

: a⊗n(D,C) −→ PCom(k)
(
y(A)(C), y(B)(D)

)
x 7−→

[
a(C,A)→ a(D,B) : g 7→

(∑
a

ξ1+n(2,a)

[(
ν1+n(1,a)

(g, x1a)
)
(1), x2a

])
(1)
]
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where n(i,a) = |xia|. For all k ≥ 2, µk(ξ
(k), . . . , ξ(1)) is the pre-natural trans-

formation given by

[
µk(ξ(k), . . . , ξ(1))

]
n

: a⊗n(D,C) −→ PCom(k)
(
y(A)(C), y(B)(D)

)(26)

x 7−→
[
a(C,A)→ a(D,B)

]
g 7→

(∑
a

ξ
(k)
1+n(k,a)

. . .
[(
ξ
(2)
1+n(2,a)

[(
ξ
(1)
1+n(1,a)

(g, x1a)
)
(1), x2a

])
(1)
]
. . . , xka

)
(1)

Analogously to the filteredness of the components of Π, we find that µ is
a filtered object.

By the strict unitality of a, we have that

0 = µ1(M0) = m(m0,−)(g, ∗)(1)

= µ2(−,M0) = µ2(M0,−) = µ3(−,−,M0) = . . .

where ∗ is an element of Ba. The rest of the proof is analogous to the proof
in [3, §8] that µ is an A∞-natural transformation. �

Lemma 4.16. The composition Π ∗ Y : a −→ a equals the identity functor
Ida.

Proof. We will prove that they have the same components Bka −→ a, en-
tailing their equality.

(Π ∗ Y )0 = 0 = (Ida)0

(Π ∗ Y )1(f) = Π1(Y1(f))

= Π1(m(f,−))

= m2(f, 1)

= f

= (Ida)1(f)

(Π ∗ Y )2(f, g) = Π1(Y2(f, g)) + Π2(Y1(f), Y1(g))

= Π1(m(f, g,−)) + Π2(m(f,−),m(g,−))

= m3(f, g, 1) +m3(f, 1,m2(g, 1))

= 0

= (Ida)2(f, g)

Analogously, we find by means of the strict unitality of a that the higher
components match as well. �

4.3. Curved tensor product of cA∞-categories. In this section, we de-
fine a tensor product between arbitrary cA∞-categories and give an explicit
alternative construction on the underlying tensor quiver in case one of the
tensor factors is a cdg category.

We assume all cA∞-categories in this section to be strictly unital.

Definition 4.17. Consider cA∞-categories a and b. We define the Yoneda
tensor product

a⊗Y b = Rep(a)⊗cdg Rep(b)

where the tensor product on the right hand side is the classical tensor prod-
uct of cdg-categories.
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Proposition 4.18. Consider cA∞-categories a, b and c, such that a ∼= b
are cA∞-homotopy equivalent. There is a homotopy-equivalence of cA∞-
categories

a⊗Y c ∼= b⊗Y c

Proof. By Theorem 4.15, we know that the cA∞-homotopy equivalence a ∼=
b results in a cA∞-homotopy equivalence Rep(a) ∼= Rep(b). Consider the
cA∞-functors F : Rep(a) −→ Rep(b), G : Rep(b) −→ Rep(a) and natural
transformations µ, η and pre-natural transformation κ, κ′ expressing the
cA∞-homotopy equivalence. I.e.

M2(µ, η)− IdId = m1(κ)

M2(η, µ)− IdFG = m1(κ′)

Consider the functors F ⊗ IdRep(c), G⊗ IdRep(c) (see Definition 4.21) and
appropriate (pre-)natural transformations (see Proposition 4.24). By def-
inition of the structure on cFun(Rep(a) ⊗ Rep(c),Rep(b) ⊗ Rep(c)), we see
that

M2(µ⊗ IdIdRep(c)
, η ⊗ IdIdRep(c)

)− IdId ⊗ IdIdRep(c)
= M2(µ, η)⊗ IdIdRep(c)

− IdId ⊗ IdIdRep(c)

= M1(κ)⊗ IdIdRep(c)

and thus that F ⊗ IdRep(c) and G ⊗ IdRep(c) determine a cA∞-homotopy
equivalence a⊗Y c ∼= b⊗Y c. �

In the remainder of this section, we present a direct construction of a
tensor product, without reference to associated categories of representable
modules, in case one of the tensor factors is a cdg category. Let (a,ma) be a
cdg-category, and (b,mb) a cA∞-category. We define a structure µ on a⊗ b
by

µ0 = (ma
0, 1b) + (1a,m

b
0)

µ1(a, b) = (ma
1(a), b)− (−1)|a|(a,mb

1(b))

µ2((a, b), (a′, b′)) = (ma
2(a, a′),mb

2(b, b′))

µ3((a, b), (a′, b′), (a′′, b′′)) = (ma
2(a,ma

2(a′, a′′)),mb
3(b, b′, b′′))

...

Proposition 4.19. The components µk define a cA∞-structure µ on the
tensor product a⊗ b.

Proof. The components µk are filtered because the components ma
k and mb

k
are filtered.

We have that µ satisfies the identity
∑

j+k+l=p(−1)jk+lµj+l+1(1⊗j⊗µk⊗
1⊗l) = 0. By strict unitality, we have for p = 0 that

µ1(µ0) = µ1((ma
0, 1b) + (1a,m

b
0))

= (ma
1(ma

0), 1b)− (ma
0,m

b
1(1b)) + (ma

1(1a),m
b
0)− (1a,m

b
1(mb

0)) = 0
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for p = 1 that

µ1(µ1)(a, b) = µ1((ma
1(a), b)− (−1)|a|(a,mb

1(b)))

= (ma
1(ma

1(a)), b)− (−1)|a|(ma
1(a),mb

1(b))− (−1)|m
a
1(a)|(ma

1(a),mb
1(b))− (a,mb

1(mb
1(b)))

= −(ma
2(a,ma

0) +ma
2(ma

0, a), b)− (a,mb
2(b,mb

0) +mb
2(mb

0, b))

= −µ2((a, b), µ0) + µ2(µ0, (a, b))

and for p ≥ 2∑
j+k+l=p

(−1)jk+lµj+l+1(1⊗j ⊗ µk ⊗ 1⊗l)((a1, b1), . . . , (ap, bp))

=
(
ma

2(a1,m
a
2(. . . ,ma

2(ap−1, ap))),
∑

j+k+l=p

(−1)jk+lmb
j+l+1(1⊗j ⊗mb

k ⊗ 1⊗l)(b1, . . . , bp)
)

= 0

since the terms from µ1µk and µkµ1 involving ma
1 in the first component

will cancel against each other since a is a cdg-category. The terms involving
ma

0 will also cancel since these will occur as tensored with an element of the
form mb

p+1(. . . , 1b, . . .) = 0. �

We put a ⊗c∞ b = (a ⊗ b, µ) for the cA∞-structure µ from Proposition
4.19. Clearly, if a and b are both l-curved for l ∈ L, the same holds for
a⊗c∞ b.

Remark 4.20. When a is a cA∞-category with non-zero higher components,
the natural structure µ on the tensor product will produce mixed-terms in
the expression

∑
j+k+l=p(−1)jk+lµ(1⊗j ⊗ µk ⊗ 1⊗l) that will not cancel out

against each other, whence it fails to define a cA∞-structure.

Definition 4.21. Consider a unital cdg-functor F : a −→ c, and a unital
cA∞-functor G : b −→ d, with underlying morphisms f resp. g, and either
F or G strict. The tensor-functor F ⊗G : a⊗b −→ c⊗d is the qA∞-functor
with underlying morphism f ⊗ g, defined by

(f ⊗ g)(A,B) = (f(A), g(B))

and components on the morphism-sets, defined by

(F ⊗G)0 : k −→ c⊗ d = F0 ⊗ 1d + 1c ⊗G0

(F ⊗G)1 : a⊗ b −→ c⊗ d = F1 ⊗G1

(F ⊗G)2 : (a⊗ b)⊗2 −→ c⊗ d = m2(F1, F1)⊗G2

(F ⊗G)3 : (a⊗ b)⊗3 −→ c⊗ d = m2(F1,m2(F1, F1))⊗G3

...

Proposition 4.22. The tensor-functor F ⊗G is a cA∞-functor.

Proof. The filteredness of the components (F⊗G)k follows from the filtered-
ness of the components Fk, Gk and m2.
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To prove that F ⊗G defines a cA∞-functor, we need to show that F̂ ⊗G
is a dg-cocategory morphism. Since it clearly commutes with the comulti-

plication, we need to check whether m̂′F̂ ⊗G = F̂ ⊗Gm̂.

m̂′F̂ ⊗G|0 = µ′0 + µ′1((F ⊗G)0) + µ′2((F ⊗G)0, (F ⊗G)0) + . . .

= (mc
0, 1d) + (1c,m

d
0) +

(
(mc

1,−) + (−,md
1)
)(
F0 ⊗ 1d + 1c ⊗G0

)
+ (mc

2,m
d
2)
(
(F0 ⊗ 1d + 1c ⊗G0), (F0 ⊗ 1d + 1c ⊗G0)

)
+ . . .

= (mc
0, 1d) + (1c,m

d
0) + (mc

1(F0), 1d) + (1c,m
d
1(G0)) + (mc

2(F0, F0), 1d) + (F0, G0) + (F0, G0)

+ (1c,m
d
2(G0, G0)) + (mc

2(F0,m
c
2(F0, F0)),md

3(1d, 1d, 1d)) + . . .

+ (mc
2(1c,m

c
2(1c, 1c)),m

d
3(G0, G0, G0)) + . . .

= (mc
0, 1d) + (1c,m

d
0) + (mc

1(F0), 1d) + (1c,m
d
1(G0)) + (mc

2(F0, F0), 1d)

+ (1c,m
d
2(G0, G0)) + (1c,m

d
3(G0, G0, G0)) + . . .

= (F1(ma
0), G1(1b)) + (F1(1a), G1(mb

0))

= F̂ ⊗Gm̂|0

m̂′F̂ ⊗G|1 = µ′1((F ⊗G)1) + µ′2((F ⊗G)0, (F ⊗G)1) + µ′2((F ⊗G)1, (F ⊗G)0)

+ µ′3((F ⊗G)0, (F ⊗G)0, (F ⊗G)1) + µ′3((F ⊗G)0, (F ⊗G)1, (F ⊗G)0)

+ µ′3((F ⊗G)1, (F ⊗G)0, (F ⊗G)0) + . . .

= (mc
1(F1), G1) + (F1,m

d
1(G1)) +

(
mc

2(F0, F1) +mc
2(F1, F0), G1

)
+
(
F1,m

d
2(G0, G1) +md

2(G1, G0)
)

+
(
F1,m

d
3(G0, G0, G1) +md

3(G0, G1, G0) +md
3(G1, G0, G0)

)
+ . . .

F̂ ⊗Gm̂|1 = (F ⊗G)1µ1 + (F ⊗G)2(−, µ0)− (F ⊗G)2(µ0,−)

= (F1 ⊗G1)
(
(ma

1,−) + (−,mb
1)
)

+ (mc
2(F1, F1)⊗G2)

(
(−, (ma

0, 1b) + (1a,m
b
0))− ((ma

0, 1b) + (1a,m
b
0),−)

)
= (F1(ma

1), G1) + (F1, G1(mb
1)) + (mc

2(F1, F1(ma
0)), G2(−, 1b))− (mc

2(F1(ma
0), F1), G2(1b,−))

+ (mc
2(F1, F1(1a)), G2(−,mb

0))− (mc
2(F1(1a), F1), G2(mb

0,−))

= (F1(ma
1), G1) + (F1, G1(mb

1)) + (F1, G2(−,mb
0))− (F1, G2(mb

0,−))

...

The equalities come from the fact that g is a unital cA∞-functor, that f is
a unital cdg-functor, and that one of them is strict.

�

Remark 4.23. In the proof, the signs coming from µ1 have been supressed
in the notation, but are respected, since F1 is a morphism of degree 0.

Proposition 4.24. Consider strict unital cdg-functors F,G : a −→ c and
unital cA∞-functors H,K : b −→ d with tensor-functors F ⊗ H and G ⊗
K. Let η : F −→ G and ν : H −→ K be a cdg- resp. a cA∞-natural
transformation. There exist a natural transformation η ⊗ ν : F ⊗ H −→
G⊗K.
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Proof. We define the natural transformation η ⊗ ν by the collection

(η ⊗ ν)0 = η0 ⊗ ν0

(η ⊗ ν)1 = m2(G1, η0)⊗ ν1

(η ⊗ ν)2 = m2(G1,m2(G1, η0))⊗ ν2

...

The filteredness of the components (η ⊗ ν)k follows from the filteredness
of the components νk, η0 and m2(G1,−).

In order to show that η⊗ ν is a natural transformation, we have to check
that M1(η ⊗ ν) = 0. Using the unitality of the functors and natural trans-
formations, we have(
M1(η ⊗ ν)

)
0

= µ1

(
(η ⊗ ν)0

)
+ µ2

(
(G⊗K)0, (η ⊗ ν)0

)
+ µ2

(
(η ⊗ ν)0, (F ⊗H)0

)
+ µ3

(
(G⊗K)0, (G⊗K)0, (η ⊗ ν)0

)
+ µ3

(
(G⊗K)0, (η ⊗ ν)0, (F ⊗H)0

)
+ µ3

(
(η ⊗ ν)0, (F ⊗H)0, (F ⊗H)0

)
+ . . .− (η ⊗ ν)1(µ0)

= m1(η0)⊗ ν0 + η0 ⊗m1(ν0) + η0 ⊗
(
m2(K0, ν0) +m2(ν0, H0)

)
+
(
m2(G0, η0) +m2(η0, F0)

)
⊗ ν0

+m2(G0,m2(G0, η0))⊗m3(1d, 1d, ν0)︸ ︷︷ ︸
=0

+ . . .+m2(1b,m2(1b, η0))⊗m3(K0,K0, ν0)

+ . . .+m2(1b,m2(1b, η0))⊗m3(K0, ν0, H0) + . . .+m2(1b,m2(1b, η0))⊗m3(ν0, H0, H0)

+ . . .− (m2(G1, η0)⊗ ν1)(ma
0 ⊗ 1b + 1a ⊗mb

0)

=
(
m1(η0) +m2(G0, η0) +m2(η0, F0)

)
⊗ ν0

+ η0 ⊗
(
m1(ν0) +m2(K0, ν0) +m2(ν0, H0) +m3(K0,K0, ν0) +m3(K0, ν0, H0)

+m3(ν0, H0, H0) + . . .− ν1(mb
0)
)

= (M1(η))0 ⊗ ν0 + η0 ⊗ (M1(ν))0
= 0

(
M1(η ⊗ ν)

)
1

= µ1

(
(η ⊗ ν)1

)
+ µ2

(
(G⊗K)0, (η ⊗ ν)1

)
+ µ2

(
(η ⊗ ν)1, (F ⊗H)0

)
+ µ2

(
(G⊗K)1, (η ⊗ ν)0

)
+ µ2

(
(η ⊗ ν)0, (F ⊗H)1

)
+ . . .− (η ⊗ ν)1(µ1)− (η ⊗ ν)2(−, µ0) + (η ⊗ ν)2(µ0,−)

= m1(m2(G1, η0))⊗ ν1 +m2(G1, η0)⊗m1(ν1) +m2(G1, η0)⊗m2(K0, ν1) +m2(G0,m2(G1, η0))⊗ ν1
+m2(G1, η0)⊗m2(ν1, H0) +m2(m2(G1, η0), F0)⊗ ν1 +m2(G1, η0)⊗m2(K1, ν0)

+m2(η0, F1)⊗m2(ν0, H1) + . . .−m2(G1(m1), η0)⊗ ν1 −m2(G1, η0)⊗ ν1(m1)

−m2(G1,m2(G1(ma
0), η0))⊗ ν2(−, 1c)−m2(G1,m2(G1(1a), η0))⊗ ν2(−,mc

0)

+m2(G1(ma
0),m2(G1, η0))⊗ ν2(1c,−) +m2(G1(1a),m2(G1, η0))⊗ ν2(mc

0,−)

=
(
m1(m2(G1, η0)) +m2(G1(m1), η0)

)
⊗ ν1

+m2(G1, η0)⊗
(
m1(ν1) +m2(K0, ν1) +m2(ν1, H0) +m2(K1, ν0) +m2(ν0, H1) + . . .− ν1(m1)

− ν2(−,mc
0) + ν2(mc

0,−)
)

=
(
m2(m1(G1), η0)) +m2(G1,m1(η0)) +m2(G1(m1), η0)

)
⊗ ν1 +m2(G1, η0)⊗ (M1(ν))1

=
(
m2((MG

0 )1, η0)) +m2(G1, (M1(η))0)
)
⊗ ν1 +m2(G1, η0)⊗ (M1(ν))1

= 0
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Analogously, we find for all n ≥ 2 that(
M1(η ⊗ ν)

)
n

=
(
m2

(
(MG

0 )1, . . . ,m2(G1, η0)
)

+ . . .+m2

(
G1, . . . ,m2((MG

0 )1, η0)
)

+m2(G1, . . . ,m2(G1, (M1(η))0)
)
⊗ ν1

+m2(G1, η0)⊗ (M1(ν))n

�

Proposition 4.25. Consider cdg categories a and a′ and cA∞-categories b
and b′, such that we have cA∞-homotopy equivalences a ∼= a′ and b ∼= b′. We
have cA∞-homotopy equivalences a⊗c∞b ∼= a′⊗c∞b and a⊗c∞b ∼= a ∼=c∞ b′.

Proof. This follows from Propositions 4.19, 4.22 and 4.24. �

Theorem 4.26. For a cdg-category a and a cA∞-category b, we have a
cA∞-homotopy equivalence a⊗c∞ b ∼= a⊗Y b.

Proof. By Propositions 4.25 and 4.18, we have

a⊗c∞ b ∼= Rep(a)⊗c∞ Rep(b) = Rep(a)⊗cdg Rep(b) = a⊗Y b.

�

5. Curved Bar- and Cobar-constructions

In this section, we define the bar and cobar constructions associated to
a cA∞-category a, which generalize the classical A∞-notions as described
in [6]. Like in the A∞-case, these constructions can be used to obtain an
adjunction, described in Corollary 5.8. In particular, for every cA∞-category
a there is an associated cdg-category ΩBa, the enveloping cdg category.
These constructions have already been considered in the curved case, by
Nicolas in [16] and by Positselski in [17], in more restrictive settings. The
relation with the approach developed in [1] remains to be elucidated.

Throughout, all objects and morphisms are supposed to be filtered.

5.1. Curved bar-construction. Consider a complete augmented filtered
dg-cocategory c and a filtered cA∞-category a, and associate with it the
graded k-module Homk(c, a), whose nth component is formed by the couples
(f0, f), where f is a k-linear filtered homogeneous morphism of degree n
which annihilates the augmentation ε : k −→ c, and f0 a k-linear filtered
morphism k −→ a of degree n such that

∑
k≥0(f0)⊗k ∈ B̂a. To such a

couple, we can associate a morphism f+ of degree n, by

f+(x) =

{
f0(x) if x ∈ Im(ε);

f(x) else.

A straightforward calculation shows that we can endow this module with a
cA∞-structure given by

b0 = (ma
0, 0)

b1(f0, f) = (ma
1f0, m

a
1f − (−1)|f |fdc)

for n ≥ 2 : bn

(
(f0,1, f1), ..., (f0,n, fn)

)
=
(
ma
n(f0,1, . . . , f0,n), ma

n

(
(f1)+ ⊗ . . .⊗ (fn)+

)
∆(n−1)

)
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We define the set of twisting cochains from c to a, as the subset Tw(c, a) ⊂
Hom1

k(c, a) of the homogeneous linear morphisms (f0, f) of degree 1 such that
they satisfy the Maurer-Cartan equation

(27)
∑
k≥0

bk((f0, f)⊗k) = 0.

Remark 5.1. We have to remark that, in general, this sum does not need
to exist. Due to the completeness of a we see that the existence of the sum
(27) in a imposes a condition on f0.

Let cCodg be the curved category of complete augmented filtered dg-
cocategories, with dg-cocategory morphisms. Such a morphism can equiv-
alently be described as a (F0, F ) : c −→ d, where F is an augmented co-
category morphism (as defined in [11, 2.1.2]) annihilating the augmenta-
tion of c, and F0 : k −→ d of degree 1 such that the associated morphism
F+ is a morphism of cocategories and commutes with the differentials (i.e.
ddF+ = F+dc). Let a be a filtered cA∞-category. Consider the functor

(28) cCodg −→ Set : c 7→ Tw(c, a)

and let cA∞ − Cat be the category of cA∞ categories and cA∞-functors.
From now on, we will simply denote the completed Bar-construction from
Definition 2.32 by Ba instead of B̂a.

Proposition 5.2. The completed bar-construction defines a fully faithful
functor

B : cA∞-Cat −→ cCodg : a 7→ Ba,

giving rise to isomorphisms Tw(−, a) ∼= cCodg(−, Ba), natural in a. In
particular, the functor (28) is representable with Ba as representative.

Proof. Let c be a complete augmented filtered dg-cocategory, and consider
a morphism (F0, F ) : c −→ Ba. By the universal property of the Tensor-
category [11, Lemma 1.1.2.2], we know that F0 and F are determined by
the projections f0 = p1F0 and f = p1F , as is the associated morphism F+.
It is not hard to see that the projection of the associated morphism F+ is in
fact (f0, f)+. The condition that F+ has to commute with the differentials
can equivalently be described as p1F+dc = p1dBaF+, i.e. by the equations

ma
0 +

∑
k≥1

ma
k(f
⊗k
+ ∆k−1) = f+dc

where ma
0 only counts when the argument is an element of Im(ε). Since this

is clearly equivalent to the expression∑
k≥0

bk((f0, f)⊗k) = 0

we find the required isomorphism Tw(c, a) ∼= cCodg(c, Ba) �

Remark 5.3. By definition of the completed bar-construction we have an
isomorphism

cFunc(a, b) ∼= cCodg(Ba, Bb)
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given by sending (f0, f1, . . .) to (f̂0, ̂(f1, . . .)), where ̂(f1, . . .) denotes the map

Ba −→ Bb : x 7→

{
x if x ∈ Im(ε)

̂(f0, f1, . . .)(x) else

and the effect of m0 and f0 should be interpreted as working on k = Im(ε).

5.2. Curved Cobar-construction. Consider cdg-Cat, the category of cdg-
categories with cdg-functors. Restricting ourselves to such cdg-categories a,
the functor (28) is also co-representable, namely by the cobar-construction
Ωc.

Definition 5.4. Let c be an augmented dg-cocategory (see Definitions 2.38,
2.40). The reduced cocategory c is the cocategory c/Im(ε), with the same
objects as c, and Hom-sets given by the expression:

c(A,B) = c(A,B)/Im(εA,B).

Remark 5.5. Let A 6= B be objects of c. By definition of the augmentation,
we have that Im(εA,B) = 0, and thus that c(A,B) = c(A,B).

Example 5.6. Consider an A∞-category a, and its bar-construction Ba (as
defined in [11]). The reduced bar-construction is given by

Ba =
⊕
n≥1

(Σa)⊗n.

The augmentation ε : k −→ c yields a direct sum decomposition of c =
Im(ε) ⊕ c. as such, we can decompose the comultiplication and differential
on c into the components

∆ = ∆ε + ∆ε̄ ; d = dε + dε̄

We define the cobar-construction as the reduced tensor-category of the
reduced cocategory c̄

Ωc = T (Σ−1c̄) =
⊕
k≥1

(Σ−1c̄)⊗k.

The multiplication on Ωc is given by the concatenation, whereas the differ-
ential and curvature are determined by the differential and comultiplication
on c. Namely,

mΩ
0 =

(
(s−1 ⊗ s−1)∆ε − s−1dε

)
ε

mΩ
1 =

(
(s−1 ⊗ s−1)∆ε̄s− s−1dε̄s

)∧
where the expressions ∆ and d are appropriately composed with the pro-
jection c −→ c̄, and (−)∧ is the extension of a multiplication to the tensor-
category. I.e.

(f)∧(c1, . . . , cn) =
∑
k

(c1, . . . , f(ck), . . . , cn)

This is indeed a cdg-structure since d is a differential, and the comultiplica-
tion is coassociative.
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Proposition 5.7. The cobar-construction defines a fully faithful functor

Ω : cCodg −→ cdg-Cat : c 7→ Ωc,

giving rise to isomorphisms Tw(c,−) ∼= cdg-Cat(Ωc,−), natural in c. In
particular, the functor (28) is co-representable with corepresentative Ωc.

Proof. Consider a morphism f : c −→ d. The associated morphism Ωf :
Ωc −→ Ωd is defined Ωf(c1, . . . , cn) = (f+(c1), . . . , f+(cn)). Since f is a
morphism in cCodg, it is by the definition of the differential clear that Ωf
is a cdg-functor

Let (F0, F ) : Ωc −→ a be a map in cdg-Cat(Ωc, a). Expressing that this
is a cdg-functor, yields the classical identities

ma
0 +ma

1(F0) +ma
2(F0, F0) = F (mΩ

0 )

ma
1(F ) +ma

2(F, F0) +ma
2(F0, F ) = F (mΩ

1 )

ma
2(F, F ) = F (mΩ

2 )(29)

By definition of the multiplication on Ωc, one finds that the component of F
working on c̄⊗k, Fk : c̄⊗k −→ a, is given by an iteration of the third identity
(29), and thus that the morphism F : Ωc −→ a is completely determined by
it’s first component F1 = Fι with ι : c̄ −→ Ωc the embedding. Since a is a
cdg-category, one sees that (F0, F ) is a cdg-functor if and only if∑

k

bk(F0, F1) = 0

As such we obtain an isomorphism

cdg-Cat(Ωc, a) −→ Tw(c, a) : (F0, F ) 7→ (F0, F ι)

The inverse to this map is given by

Tw(c, a) −→ cdg-Cat(Ωc, a)(f0, f) 7→ (f0, g)

where g is the extension of f to Ωc by means of the expression (29). �

Corollary 5.8. The bar and cobar constructions

cdg-Cat
B

,,
cCodg

Ω

mm

form a pair of adjoint functors.

5.3. The enveloping cdg-category. Consider a cA∞-category a. By the
adjunction of Corollary 5.8, we have an isomorphism

cdg-Cat(ΩBa,ΩBa) ∼= cCodg(Ba, BΩBa) ∼= cFun∞(a,ΩBa)

which sends (0, F ) ∈ cdg-Cat(ΩBa,ΩBa) to the strict cA∞-functor described
by the morphism f = Fι : Ba −→ ΩBa. As such the identity morphism
Id : ΩBa −→ ΩBa corresponds to a cA∞-functor I : a −→ ΩBa described
by

∀n ≥ 1 : In : a⊗n(A,B) −→ ΩBa(A,B) : (f1, . . . , fn) 7→
(

(f1, . . . , fn), 0, . . .
)

Remark 5.9. By definition of this morphism, it is universal among the cA∞-
morphisms from a into a cdg-category.
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Remark 5.10. By definition of the filtration on ΩBa, it is clear that the
components of I are filtered.

The adjunction of Corollary 5.8 also gives an isomorphism

cCodg(Ba, B(Rep(a))) ∼= cdg-Cat(ΩBa,Rep(a))

which sends the Yoneda-functor Y : a −→ Rep(a), defined in Proposition
4.13, to a strict cdg-functor ΩBa −→ Rep(a). If we compose this functor
with the Yoneda-projection, defined in Theorem 4.15, we obtain the strict
cA∞-functor

P : ΩBa −→ a

which has the identity as underlying morphism.
By means of these functors, we can now formulate the next theorem.

Theorem 5.11. The strict functors

I : a −→ ΩBa

P : ΩBa −→ a

are cA∞-homotopy inverse to each other

Proof. Since both functors I and P can be factorized over the category
Rep(a) by means of the Yoneda functor Y and Yoneda projection Π, we
can, in analogy with the proof of the curved Yoneda cA∞-homotopy equiv-
alence in Theorem 4.15, use the descriptions of the A∞-natural transfor-
mations to obtain the desired cA∞-natural transformations expressing the
cA∞-homotopy equivalence. �
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[23] B. Toën, The homotopy theory of dg-categories and derived morita theory, Invent.
Math. 167 (2007), no. 3, 615–667.

(Olivier De Deken) Universiteit Antwerpen, Departement Wiskunde-Informatica,
Middelheimcampus, Middelheimlaan 1, 2020 Antwerp, Belgium

E-mail address: olivier.dedeken@myonline.be

(Wendy Lowen) Universiteit Antwerpen, Departement Wiskunde-Informatica,
Middelheimcampus, Middelheimlaan 1, 2020 Antwerp, Belgium

E-mail address: wendy.lowen@uantwerpen.be


